[]
Users can use the AI.TEXTSENTIMENT function to analyze the sentiment of text in a cell, returning Positive, Negative, or Neutral results.
AI.TEXTSENTIMENT(array, positive, negative, [neutral])
This function has these arguments:
Argument | Description |
|---|---|
array | [Required] The array of data to be passed to the function, such as a range reference. |
positive | [Required] The value to return when the sentiment analysis result is positive. |
negative | [Required] The value to return when the sentiment analysis result is negative. |
neutral | [Optional] The value to return when the sentiment analysis result is neutral. |
The following example shows how to invoke the OpenAI GPT-4.1 model and use the AI.TRANSLATE function for single sentence and batch text translation.
// To use this example, install the OpenAI dependency via NuGet Package Manager in your project.
// Configure the model request handler and choose different large model providers as needed. Here the example uses OpenAI GPT-4.1; replace with your API key when using.
Workbook.AIModelRequestHandler = new OpenAIModelRequestHandler("https://api.openai.com/v1", "sk-xxxx", "gpt-4.1");
// DeepSeek model.
// Workbook.AIModelRequestHandler = new OpenAIModelRequestHandler("https://api.deepseek.com/v1", "sk-xxxx", "deepseek-chat");
// Qwen model.
// Workbook.AIModelRequestHandler = new OpenAIModelRequestHandler("https://dashscope.aliyuncs.com/compatible-mode/v1", "sk-xxxx", "qwen-plus");
// Initialize the workbook and set data.
var workbook = new Workbook();
IWorksheet sheet = workbook.Worksheets[0];
sheet.Columns[0].ColumnWidth = 55;
sheet.Columns[1].ColumnWidth = 55;
sheet.Range["A1:B1"].Merge();
sheet.Range["A1"].Value = "Example: Customer Product Reviews";
sheet.Range["A1"].Font.Bold = true;
sheet.Range["A1"].Font.Size = 16;
sheet.Range["A1"].Font.Color = Color.White;
sheet.Range["A1"].Interior.Color = Color.FromArgb(90, 126, 158);
sheet.Range["A1"].HorizontalAlignment = HorizontalAlignment.Center;
sheet.Range["A1"].VerticalAlignment = VerticalAlignment.Center;
sheet.Range["A1"].RowHeight = 35;
sheet.Range["A3"].Value = "Formula:";
sheet.Range["A3"].Font.Bold = true;
sheet.Range["A3"].Font.Size = 11;
sheet.Range["A3"].Interior.Color = Color.FromArgb(217, 225, 242);
sheet.Range["B3"].Value = "=AI.TEXTSENTIMENT(A6:A13,\"Positive\",\"Negative\",\"Neutral\")";
sheet.Range["B3"].Font.Italic = true;
sheet.Range["B3"].Font.Color = Color.FromArgb(68, 114, 196);
sheet.Range["B3"].WrapText = true;
sheet.Range["A5:B5"].Value = new object[,] {
{ "Review Text", "AI Sentiment" }
};
sheet.Range["A5:B5"].Font.Bold = true;
sheet.Range["A5:B5"].Interior.Color = Color.FromArgb(155, 194, 230);
sheet.Range["A5:B5"].HorizontalAlignment = HorizontalAlignment.Center;
sheet.Range["A6:A13"].Value = new object[,] {
{ "I absolutely love this product! It exceeded all my expectations!" },
{ "This is the worst purchase I've ever made. Total waste of money." },
{ "The product is okay, nothing special but does the job." },
{ "Outstanding quality and excellent customer service!" },
{ "Disappointed with the quality. Not worth the price." },
{ "It's average. Works fine but could be better." },
{ "Amazing! Best product ever! Highly recommend to everyone!" },
{ "Terrible experience. Would not recommend to anyone." }
};
for (int i = 6; i <= 13; i++)
{
if ((i - 6) % 2 == 0)
{
sheet.Range["A" + i].Interior.Color = Color.FromArgb(242, 242, 242);
}
sheet.Range["A" + i].Borders.LineStyle = BorderLineStyle.Thin;
sheet.Range["A" + i].Borders.Color = Color.FromArgb(200, 200, 200);
sheet.Range["A" + i].WrapText = true;
}
// Define an AI sentiment analysis formula that classifies the contents of the range A6:A13 as Positive, Negative, or Neutral.
sheet.Range["B6"].Formula2 = "=AI.TEXTSENTIMENT(A6:A13,\"Positive\",\"Negative\",\"Neutral\")";
for (int i = 6; i <= 13; i++)
{
sheet.Range["B" + i].Font.Bold = true;
sheet.Range["B" + i].Font.Size = 11;
sheet.Range["B" + i].HorizontalAlignment = HorizontalAlignment.Center;
sheet.Range["B" + i].Borders.LineStyle = BorderLineStyle.Medium;
sheet.Range["B" + i].Borders.Color = Color.FromArgb(200, 200, 200);
}
// Apply conditional formatting to the sentiment analysis results.
IFormatCondition positiveCondition = (IFormatCondition)sheet.Range["B6:B13"].FormatConditions.Add(
FormatConditionType.CellValue,
FormatConditionOperator.Equal,
"=\"Positive\"",
null
);
positiveCondition.Interior.Color = Color.FromArgb(226, 239, 218);
positiveCondition.Font.Color = Color.FromArgb(0, 128, 0);
IFormatCondition negativeCondition = (IFormatCondition)sheet.Range["B6:B13"].FormatConditions.Add(
FormatConditionType.CellValue,
FormatConditionOperator.Equal,
"=\"Negative\"",
null
);
negativeCondition.Interior.Color = Color.FromArgb(255, 199, 206);
negativeCondition.Font.Color = Color.FromArgb(192, 0, 0);
IFormatCondition neutralCondition = (IFormatCondition)sheet.Range["B6:B13"].FormatConditions.Add(
FormatConditionType.CellValue,
FormatConditionOperator.Equal,
"=\"Neutral\"",
null
);
neutralCondition.Interior.Color = Color.FromArgb(255, 242, 204);
neutralCondition.Font.Color = Color.FromArgb(128, 100, 0);
// The AI function is executed as an asynchronous calculation, so you need to wait for the calculation to complete.
workbook.Calculate();
workbook.WaitForCalculationToFinish();
// Set the page to fit on a single page.
sheet.PageSetup.FitToPagesTall = 1;
sheet.PageSetup.FitToPagesWide = 1;
sheet.PageSetup.IsPercentScale = false;
// Save as a PDF file.
workbook.Save("AITEXTSENTIMENT.pdf");/// <summary>
/// Implementation of IAIModelRequestHandler for OpenAI API.
/// This class handles HTTP communication with OpenAI-compatible APIs.
/// </summary>
public class OpenAIModelRequestHandler : IAIModelRequestHandler
{
private readonly string _apiEndpoint;
private readonly string _apiKey;
private readonly string _model;
private readonly OpenAIClient _openAIClient;
/// <summary>
/// Initializes a new instance of the <see cref="OpenAIModelRequestHandler"/> class.
/// </summary>
/// <param name="apiEndpoint">The API endpoint URL for OpenAI-compatible API.</param>
/// <param name="apiKey">The API key for authentication.</param>
/// <param name="model">The model name to use for requests.</param>
public OpenAIModelRequestHandler(string apiEndpoint, string apiKey, string model)
{
if (string.IsNullOrWhiteSpace(apiEndpoint))
throw new ArgumentException("API endpoint cannot be null or empty.", nameof(apiEndpoint));
if (string.IsNullOrWhiteSpace(apiKey))
throw new ArgumentException("API key cannot be null or empty.", nameof(apiKey));
_apiEndpoint = apiEndpoint.TrimEnd('/');
_apiKey = apiKey;
_model = model;
// Create OpenAI client with custom endpoint if not using default OpenAI endpoint
var clientOptions = new OpenAIClientOptions();
if (!_apiEndpoint.Contains("api.openai.com"))
{
clientOptions.Endpoint = new Uri(_apiEndpoint);
}
var apiCredentials = new ApiKeyCredential(_apiKey);
_openAIClient = new OpenAIClient(apiCredentials, clientOptions);
}
/// <summary>
/// Sends a model request to the OpenAI API asynchronously.
/// </summary>
/// <param name="request">The model request containing messages and options.</param>
/// <returns>A <see cref="Task{ModelResponse}"/> representing the asynchronous operation.</returns>
public async Task<AIModelResponse> SendRequestAsync(AIModelRequest request)
{
if (request == null)
{
Console.Error.WriteLine("Request cannot be null");
return new AIModelResponse
{
IsSuccess = false,
};
}
try
{
var chatMessages = new List<ChatMessage>();
foreach (var item in request.Messages)
{
ChatMessage message;
switch (item.Role.ToLowerInvariant())
{
case "system":
message = ChatMessage.CreateSystemMessage(item.Content);
break;
case "user":
message = ChatMessage.CreateUserMessage(item.Content);
break;
default:
throw new InvalidOperationException($"Unknown message role: {item.Role}");
}
chatMessages.Add(message);
}
if (chatMessages.Count == 0)
{
throw new InvalidOperationException("The request must contain at least one message.");
}
// Get chat client and make the request
var chatClient = _openAIClient.GetChatClient(_model);
var response = await chatClient.CompleteChatAsync(chatMessages);
if (response?.Value?.Content?.Count > 0)
{
var content = string.Join("", response.Value.Content.Select((ChatMessageContentPart c) => c.Text));
return new AIModelResponse
{
Content = content,
IsSuccess = true
};
}
else
{
Console.Error.WriteLine("No content received from the model.");
return new AIModelResponse
{
IsSuccess = false,
};
}
}
catch (HttpRequestException httpEx)
{
Console.Error.WriteLine($"HTTP request failed: {httpEx.Message}");
return new AIModelResponse
{
IsSuccess = false,
};
}
catch (TaskCanceledException tcEx) when (tcEx.InnerException is TimeoutException)
{
Console.Error.WriteLine("Request timed out.");
return new AIModelResponse
{
IsSuccess = false,
};
}
catch (Exception ex)
{
Console.Error.WriteLine($"An error occurred: {ex.Message}");
return new AIModelResponse
{
IsSuccess = false,
};
}
}
}The output is shown below:
