Document Solutions for Word

Table of Contents

Document Solutions for Word Overview
Key Features
Getting Started
Quick Start
License Information
Technical Support
Contacting Sales
Redistribution
End-User License Agreement
Product Architecture
Features
Comments
Content Controls
Glossary Document
Document
Document Properties
Document Protection
Document Formatting Source
Copy or Move Document Content
Split or Merge Documents
Page Settings
Styles
Text Effect
Export
Fields
Footnote and Endnote
Embedded Fonts
Header and Footer
Images
Shapes
Textbox
Canvas Shape
Group Shape
Ink Shape

© 2024 MESCIUS inc. All rights reserved.

5-6
7-9
10-12
13-14
15

16

17

18
19-22
23
24-26
27-31
32

33
34-36
37-42
43-44
45-47
48-49
50-52
53-56
57-60
61-63
64-66
67-69
70-74
75-78
79-83
84
85-87
88-89
90-91
2

Document Solutions for Word 2

Shape 93
Shape Format 94-101
Picture 102
Picture Format 103-107
Online Video 108-109
Presets and Themed Styles 110-111
Shape Styles 112-122
Office Math 123-135
Complex Equation Examples 136-140
Links 141
Hyperlink 142-144
Bookmark 145-147
Lists 148-151
Paragraph 152
Paragraph 153-154
Indentation 155
Line Spacing 156
Borders 157-158
Background Shading 159
Tab Stops 160
Paragraph Numbering 161
Paragraph Styling 162
Range Objects 163-166
Sections 167-170
Table 171
Table 172-177
Cell 178-180
Row 181-182
Text 183-192
Themes 193-194
Helper Methods for Adding Content 195-200
Report Templates 201-207
Template Configuration 208
Template Tags 209-210
List 211-213
Table 214-219

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

Links
Loops and Nesting
Conditionally Hide Blocks
Calculation
Formatters
Restart List Formatter
Sequence and Follow Formatter
Block Behavior Formatters
Data Source Binding
Template Validation
Walkthrough
Generate Document with Advanced Layout
Generate Document using JSON Data Source
Generate Document using Multiple Data Sources
Samples
API Reference
Release Notes
Breaking Changes
Version 7.1.0
Version 7.0.0
Version 6.2.0
Version 6.1.0
Version 6.0.0
Version 5.2.0.800
Version 5.1.0.790
Version 5.0.0.762
Version 4.2.0.719
Version 4.2.0.715
Version 4.1.0.658
Version 4.0.0.616
Version 3.2.0.548
Version 3.1.0.508
Version 3.0.0.414
Version 2.2.0.310
Version 2.1.0.260

© 2024 MESCIUS inc. All rights reserved.

3

220-221
222-223
224-227
228-231
232-235
236-237
238-239
240-241
242-247
248-249
250
251-256
257-259
260-261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281-283
284

Document Solutions for Word 4

Document Solutions for Word Overview

Document Solutions is a cross-platform solution for document management which aims to provide a universal
document, editor and viewer solution for all popular document formats.

Document Solutions for Word (DsWord, previously GcWord), is a part of Document Solutions that aims to be a
complete solution to program and work with Word documents, without using any external word processor like MS
Word. DsWord is a high performance library which is supported on .NET Standard 2.0 and can be used to create, load,
modify, and save Word documents programmatically. It offers a rich and comprehensive object model which is simple
to use and is based on Microsoft Office API, Word Javascript APl and OpenXML SDK. It provides extensive set of
features which allows developers to generate Word documents with formatted text, images, tables, hyperlinks,
comments, headers, footers, footnotes, endnotes and more, and export Word documents to PDF.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

Key Features

DsWord provides many different features that enable the developers to build intuitive and professional-looking Word
documents. The main features for DsWord library are as follows:

Work with Word documents programmatically

Using DsWord, you can programmatically create Word documents with simple or complex business
requirements in .NET Standard applications without the help of an external word processor. You can also load,
modify the Word documents from an external source and save them again.

High-Performance Library
DsWord is a high performance library which is faster alternative to the Microsoft Word automation.

Work with Document content
DsWord allows you to work with inbuilt document properties, text objects, range objects, and preserve macros.
You can also copy or move document content and split or merge documents.

Document Formatting
DsWord supports document formatting which includes character, paragraph, list, table, page, and section
formatting. You can also detect source of formatting property in Word documents.

Advanced document protection
DsWord lets you protect the contents of a document. DsWord provides properties to control the different
types of modifications applied on Word documents.

Extensive support for Content controls
DsWord library provides support for different types of content controls and their mappings. It also provides the
flexibility to reuse your content by creating building blocks and maintaining their collection.

Supported file formats
DsWord supports DOCX, DOTM, DOCM, DOTX file formats completely and can read files with FlatOPC,
FlatOpcMacroEnabled, FlatOpcTemplate, and FlatOpcTemplateEnabled formats.

Export to PDF and Image Formats

DsWord library allows you to export a Word document to PDF and Image file formats programmatically with
just a single line of code. Even, right-to-left text, vertical text, East Asian languages, superscript, subscript etc.
can also be exported without impacting their formats.

View Options
DsWord library lets you set the view and zoom options to specify how a document appears when it is opened
in an application.

Theme
DsWord library allows you to customize themes applied on a Word document, hence giving it a consistent
styling and professional look.

Rich set of features

DsWord library provides a rich set of features that allow you to generate Word documents with content
including formatted text and paragraphs, images, shapes, hyperlinks, bookmarks, comments, tables, lists,
headers, footers, footnotes, endnotes, textbox and more.

Report Templates to Generate Word Documents
DsWord provides Report Templates with comprehensive AP| to generate Word Documents with advanced

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 6

layouts. You can use various data sources to bind the data. The template layout provides flexible syntax, easy
notations and extended reusability making it an ideal solution to generate desired documents.

For additional information about the supported features in DsWord, see Features topic.

Z] Note: Keep in mind that the following MS Word objects are not yet supported by DsWord object model. These
objects are preserved in a load, modify, or save scenario but are not accessible via DsWord object model and are
not parsed by DsWord except for removal.

Charts & diagrams

VML Objects

Embedded objects, such as controls and OLE objects
Revisions

Ruby Phonetic Guide

Sub documents references

Picture Effects

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 7

Getting Started

System Requirements

The DsWord packages are fully supported on Visual Studio 2017 or later for Windows, Visual Studio for MAC, and Visual
Studio Code for Linux and are compatible with the following:

.NET 5, .NET 6, and .NET 7

.NET Core 2.x and 3.x

.NET Standard 2.x

.NET Framework 4.6.1 or higher

Setting up an Application

DsWord references are available through NuGet, a Visual Studio extension that adds the required libraries and references to
your project automatically. To work with DsWord, you need to have following references in your application:

Reference Purpose

DS.Documents.Word To use DsWord in an application, you need to reference (install) just the DS.Documents.Word
package. It pulls in the required infrastructure packages.

DS.Documents.Word.Layout ' To enable saving Word documents to PDF, install the DS.Documents.Word.Layout package
(DsWordLayout for short). It provides extension methods allowing to save DsWordDocument
as PDF.

DS.Documents.Imaging For image handling, you need to reference (install) the DS.Documents.Imaging package.

DS.Documents.DX.Windows DS.Documents.DX.Windows is an infrastructure package. You do not need to reference it
directly.

["g| Note: With v7.0, GrapeCity.Documents.Word (GcWord) package is renamed to DS.Documents.Word (DsWord). The
namespaces and classes within DS.Documents.Word remain the same, which provide the same functionality and are
backwards compatible with GrapeCity.Documents.Word, ensuring minimal impact on your existing projects.

To upgrade GcWord package to DsWord package in your existing projects, follow one of the below options:

e Update package using Migration tool:
1. The migration tool is present in the package downloaded from the website. Follow the
instructions displayed in the Ul when using the tool for a seamless migration from GcWord to DsWord.
e Update package manually from NuGet package manager:
1. In Solution Explorer, right-click either Dependencies or a project and select Manage NuGet Packages.
2. In Installed tab, click on GrapeCity.Documents.Word package and click Uninstall to remove it and its
dependencies from the project.
3. In Browse tab, type "ds.documents” or "DS.Documents"” in the search text box at the top and find the
package "DS.Documents.Word".
4. Click Install to add the DS.Documents.Word package and its dependencies into the project.

Add reference to DsWord in your application from nuget.org

In order to use DsWord in a .NET Core, ASP.NET Core, .NET Framework application (any target that supports .NET Standard
2.0), install the NuGet packages in your application using the following steps:

Visual Studio for Windows

1. Open Visual Studio.
2. Create any application (any target that supports .NET Standard 2.0).
3. Right-click the project in Solution Explorer and choose Manage NuGet Packages.

© 2024 MESCIUS inc. All rights reserved.

https://github.com/dotnet/core/blob/main/release-notes/6.0/supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/7.0/supported-os.md
https://www.nuget.org/packages/DS.Documents.Word
https://www.nuget.org/packages/DS.Documents.Word.Layout
https://www.nuget.org/packages/DS.Documents.Imaging
https://www.nuget.org/packages/DS.Documents.DX.Windows

Document Solutions for Word 8

4. In the Package source on top right, select nuget.org.

5. Click Browse tab on top left and search for "DS.Documents".
6. On the left panel, select DS.Documents.Word.

7. On the right panel, click Install.

Browse Installed Updates NuGet Package Manager: ConsoleApp1

D5.Docurments. X () [#] Include prerelease Package source: nuget.org -

DS.Documents.Word nuget.org

Document S s HTML] ml} is a cross-platform) o
library that p - HTM ocessing and rendering featu.., Version: Latest stable 7.0.3

@ Package source mapping is off. onfigur
DS.Documents.Word by MESCIUS inc,, 675 downloat _— —
Document Solutions for Word (DsWeord] is a cross-platform

library for creating, analyzing, and modifying Office Word... T

DS.Documents.Imaging.Skia by MESCIUS inc, 590 7.0.3 Description
D5.Documents.lmaging.5kia (Dslmaging.Skia) is a cross-
platform rendering engine

Jocument Solutio
library for creating, ana
documents without dependencies on b .
DS.Documents.Word.Lay SCIUS inc, 547 7.03 It ust and co nt object mod
platform library providing document lay
fwww.nuget.org/packages/D3.Docume..,

DS.Documents.Pdf.ViewerSupportApi by MESCI 7.0.3 C N de easier and more co
The D5.Documents.Pd erSupportApi package 0 L ord's notion of ranges allc
implements the s] upport AP for the Document...

content even while the document is being mo

8. In the Preview Changes dialog, click OK and choose | Accept in the next screen.

Visual Studio for Mac

Open Visual Studio for Mac.

Create any application (any target that supports .NET Standard 2.0).

In tree view on the left, right-click Dependencies and choose Add Packages.

In the Search panel, type "DS.Documents".

From the list of packages displayed in the left panel, select DS.Documents.Word and click Add Packages.
Click Accept.

SO hAwWN =

This automatically adds references of the package and its dependencies to your application.

Visual Studio Code for Linux

Open Visual Studio Code.
Install Nuget Package Manager from Extensions.
Create a folder "MyApp" in your Home folder.
In the Terminal in Visual Studio Code, type "cd MyApp"
Type command "dotnet new console"
Observe: This creates a .NETCore application with MyApp.csproj file and Program.cs.
Press Ctrl+P. A command line opens at the top.
7. Type command: ">"
Observe: "Nuget Package Manager: Add Package" option appears.
8. Click the above option.
9. Type "DS" and press Enter.
Observe: DS packages get displayed in the dropdown.
10. Choose DS.Documents.Word.
11. Type following command in the Terminal window: "dotnet restore"

vihwn =

o

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

This adds references of the package to your application.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 10

Quick Start

The following quick start sections help you in getting started with the DsWord library.

Create and Save a Word Document

This quick start covers how to create a simple Word document having a single page, add text to it and save it in a .NET
Core or .NET Standard application. Follow the steps below to get started:

1. Create a new DsWord document
2. Add text to the document
3. Save the document

Hello World!

Step 1: Create a new DsWord document

1. Create a new application (.NET Core Console App\Windows Forms App) and install the DS.Documents.Word
package to add the required dlls to the project. For detailed information on how to add the NuGet packages,
see Getting Started.

2. Include the following namespace

o using GrapeCity.Documents.Word;
3. Create a new Word document using an instance of the GcWordDocument class, through code.

C#

// Create a new Word document:

GcWordDocument doc = new GcWordDocument () ;
Back to Top

Step 2: Add text to the document
DsWord provides two methods to add text to the document:

® Access the first section from the body of the document using the GetRange method and add a paragraph to
the paragraph collection using Add method of the ParagraphCollection class.
® Or, Add a paragraph to the paragraph collection using the AddParagraph method of Body class.

C#

// Add a paragraph with the 'Hello, World!' text to the first section:
doc.Body.Sections.First.GetRange () .Paragraphs.Add ("Hello World!");

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 11

// Or
doc.Body.AddParagraph ("Hello World!");

["§| Note: DsWord provides various content elements helper methods in the classes to add different content
elements directly, thus making the code shorter, clearer, and the content elements easily accessible. For more
information, see Helper Methods for Adding Content.

Back to Top
Step 3: Save the document

Save the document using Save method of the DsWordDocument class.

C#

//Save the created Word file
doc.Save ("CreateDoc.docx") ;

| 2] Note that the file is saved to the default location, which is the "bin/Debug" folder of the application.

Back to Top

Load and Modify a Word Document

This quick start covers how to load an existing Word document, modify it and save it using a .NET Core or .NET
Standard application. Follow the steps below to get started:

1. Load an existing document in DsWord
2. Modify the document
3. Save the document

Hello World!

This document has been modified. A new paragraph is added to the document.

Step 1: Load an existing document in DsWord

1. Create a new application (.NET Core Console App\Windows Forms App) and install the DS.Documents.Word
package to add the required dlls to the project. For detailed information on how to add the NuGet packages,
see Getting Started.

2. Include the following namespace

o using GrapeCity.Documents.Word;
3. Create a new instance of the DsWordDocument class to load an existing document.

C#

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 12

// Create a new Word document:
GcWordDocument doc = new GcWordDocument () ;

4. Load an existing document using Load method of the DsWordDocument class. In this example, the document
to be loaded is placed in the "bin/Debug" folder of the application. In case you want to load a document from
some other location in your system, you can update the location accordingly in the code.

C#

doc.Load ("SampleDoc.docx") ;

Back to Top
Step 2: Modify the document

To modify the document, access the first section from body of the document using the GetRange method and add a
paragraph to the paragraph collection using Add method of the ParagraphCollection class.

C#

// Add a new paragraph with the specific content, to the existing document
Paragraph p = doc.Body.Sections.First.GetRange () .Paragraphs.Add("This document" +
"has been modified. A new paragraph is added to the document.");

Back to Top
Step 3: Save the document

Save the document using the Save method.

C#

//Save the modifed Word file
doc.save ("SampleDoc Modified.docx", DocumentType.Document) ;

Back to Top

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 13

License Information

Types of Licenses

Document Solutions for Word supports the following types of license:

o Unlicensed
e Evaluation License
e Licensed

Unlicensed

After downloading, the product works in unlicensed mode. The following limitations are imposed when the product is
used without license:

® Only 200 paragraphs in a Word file can be saved for analyzing.

® On saving the Word file, a text is displayed on the beginning of the first page of that file:
'Created with unlicensed copy of Document Solutions for Word. The document is limited to 200 paragraphs.
Contact us.sales@mescius.com to get your 30-day evaluation key.'

Z] Note: Please note that the above text is inserted as the first paragraph into the document when it is saved, which
changes the indices of other paragraphs in the saved file (but not in the current object model).

In case of PDF export, following page header is displayed on all the pages of the PDF file.

'Created with unlicensed copy of Document Solutions for Word. Contact us.sales@mescius.com to get your 30-day
evaluation key.'

Evaluation License

DsWord evaluation license is available to users for 30 days to evaluate the product. If you want to evaluate the
product, you can ask for the evaluation license key by sending an email to us.sales@mescius.com.

The evaluation version has an expiration date that is determined when an evaluation key is generated. After applying
the evaluation license key, you can use the complete product until the license expiry date.

After the expiry date, the product works in unlicensed mode with the above mentioned limitations.

In such case, following watermark is displayed in the Word file:
'Created with expired evaluation copy of Document Solutions for Word. The document is limited to 200 paragraphs.
Contact us.sales@mescius.com to purchase license.'

Z] Note: Please note that the above text is inserted as the first paragraph into the document when it is saved, which
changes the indices of other paragraphs in the saved file (but not in the current object model).

On exporting a Word document to a PDF, following page header is displayed on all the pages of the PDF file:
'Created with expired evaluation copy of Document Solutions for Word. Contact us.sales@mescius.com to purchase
license.'

Licensed

DsWord production license is issued at the time of purchase of the product. If you have a production license, you can
access all the features of DsWord without any limitations.

Apply License

© 2024 MESCIUS inc. All rights reserved.

mailto:us.sales@mescius.com
mailto:us.sales@mescius.com
mailto:us.sales@mescius.com
mailto:us.sales@mescius.com
mailto:us.sales@mescius.com

Document Solutions for Word 14

To apply evaluation/production license in DsWord, the long string key needs to be copied to code in one of the
following two ways.

® Pass it as an argument to the GcWordDocument's ctor:
var doc = new GcWordDocument ("key")
This licenses the instance being created.

e (all a static method on GcWordDocument:

GcWordDocument.SetLicenseKey ("key") ;
This licenses all the instances while the program is running.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 15

Technical Support

If you have a technical question about this product, consult the following sources:

® Product forum: https://developer.mescius.com/forums
® Email: us.sales@mescius.com

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/forums
mailto:us.sales@mescius.com

Document Solutions for Word 16

Contacting Sales

If you would like to find out more about our products, contact our Sales department using one of these methods:

World Wide Web site https://developer.mescius.com/

E-mail us.sales@mescius.com

Phone (800) 858-2739 or (412) 681-4343 outside the US.A.
Fax (412) 681-4384

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/
mailto:us.sales@mescius.com

Document Solutions for Word 17

Redistribution

To distribute an application containing the DsWord API, it is necessary to have a valid Distribution License and meet
any System Requirements.

|] DsWord makes it easy to deploy your application to your local servers or cloud offerings such as Azure.

For more information about Distribution License, contact our Sales department using one of these methods:

World Wide Web site https://developer.mescius.com/
E-mail us.sales@mescius.com

Phone 1.800.858.2739 or 412.681.4343
Fax (412) 681-4384

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/forums
mailto:us.sales@mescius.com

Document Solutions for Word 18

End-User License Agreement

The MESCIUS licensing information, including the MESCIUS end-user license agreement, frequently asked licensing
guestions, and the MESCIUS licensing model, is available online. For detailed information on licensing, see MESCIUS
Licensing. For MESCIUS end-user license agreement, see End-User License Agreement For MESCIUS Software.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/licensing/grapecity/
https://developer.mescius.com/licensing/grapecity/
https://developer.mescius.com/legal/eula

Document Solutions for Word 19

Product Architecture

Packaging

DsWord is a collection of cross-platform .NET class libraries written in C#, that provides API to create DOCX/DOCM
MS Word files from scratch. The library also allows to load, analyze and modify existing Word documents.
DsWord is compatible with .NET Core 2.x/3.x, .NET Standard 2.x, .NET Framework 4.6.1 or higher, and .NET 6 or higher.

DsWord and supporting packages are available on nuget.org:

Package Description
DS.Documents.Word Main package which automatically pulls in the other required infrastructure
packages.

DS.Documents.Word.Layout Enables saving Word documents as PDF.
DS.Documents.Imaging Provides image handling.

DS.Documents.DX.Windows Provides access to the native graphics APIs when running on a Windows system.

Document Overview

A Word document in DsWord is represented by an instance of the GrapeCity.Documents.Word.GcWordDocument
class.

The object model of the GeWordDocument class corresponds to the structure of a Word document, with the
following properties corresponding to major parts of the document:

Property Description

Body The main document story

Styles A collection of document styles to format document content

ListTemplates A collection of list templates to format list content in the document

Settings Provides options to control view, compatibility and other settings

Theme Provides the different formatting options available to a document through a theme

CustomXMLParts | Provides the collection of CustomXMLPart objects.

GlossaryDocument | Provides the supplementary document storage which stores the content for future insertion.

Body

Body is the place where the content elements (representing the actual content of a document) are stored.
GcWordDocument.Body represents the main content of the document, but other parts of the document (such as
headers/footers, comments, footnotes/endnotes) also have bodies to store their content, the specific body type is
indicated by the GrapeCity.Documents.Word.BodyType enumeration, which has the following members:

Member Description
Main Body of main document part
Header Body of section header

© 2024 MESCIUS inc. All rights reserved.

https://www.nuget.org/packages?q=grapecity.documents

Document Solutions for Word

Footer

Comment

BuildingBlock

Footnote

FootnoteSeparator
FootnoteContinuationSeparator
FootnoteContinuationNotice
Endnote

EndnoteSeparator
EndnoteContinuationSeparator

EndnoteContinuationNotice

Body of section footer

Body of comment

Body of building block

Body of footnote

Body of footnote separator

Body of footnote continuation separator
Body of footnote continuation notice
Body of endnote

Body of endnote separator

Body of endnote continuation separator

Body of endnote continuation notice

Unlike other body types, the main body has Sections as the top level content elements. It also contains comments,
footnotes and endnotes collections. There are three types of content elements that can be stored in a body:

Content Element Type Description

Block elements Top level elements

Inline elements

Reference elements

Content Elements

® Sections
® tables
paragraphs

Elements that must be placed inside another elements

Runs

Texts
Pictures
Simple fields
Hyperlinks
Footnotes
Endnotes

Elements that do not have its own content in the
body (except for complex fields, see Complex Fields) but
are represented by start/end markers.

Bookmarks
e Comments
Complex fields

The following sections explain how to access and work with various content elements of a body.

Range

A range is a sequence of content elements in a body. The body itself is a kind of range that holds all the content
elements. In DsWord, the Range class is the main feature providing access to the various content elements in a

document.

All content elements have the GetRange() method, using which it is possible to access and modify collections of
elements of specific types inside the content element's range, since the Range object has properties returning

collections of specific types of objects included in the range. These collections allow to add/insert elements using the

Add() and Insert() methods.

© 2024 MESCIUS inc. All rights reserved.

20

Document Solutions for Word 21

Z] Please note that adding or inserting always occurs on one or both (e.g. when replacing a range) of a range's
boundary. It is not possible to insert something in the middle of a range without creating a range with a
boundary on that position first.

A range provides the following two overloads to get new ranges based on it:

Method Description

GetRange (ContentObject Gets a range that extends from the 'first' content object to the 'last’
first, ContentObject last)

GetRange(Marker start, Gets a range providing a fine-grained control over the range's bounds, e.g.
Marker end) GetRange(first.End, last.Start). For more information, see DsWord API Reference.

To clear all content in a range use the Range.Clear() method. Range, being a collection of ContentObject, allows to
enumerate the content elements included in it.

ContentObect

Block and inline elements are derived from the ContentObject class which provides access to the start and end
position of an element in a document. Also, it allows to get the parent content element and enumerate the element's
children.

In addition, all content objects have the Next and Previous properties which allow to enumerate objects of the same
content type through the whole body.

The Delete() method of the ContentObject class removes the element itself and all its inner content from the body.
ContentRange

Reference elements, bookmarks, comments, and complex fields, are slightly different from simple ContentObject. This
kind of elements do not have a parent content since the element can start and end anywhere. For example, it can start
in one section and end in another. Instead, reference elements provide a pair of ContentObjects named ContentMark
that define the start and end of the element. The ContentMark has Owner property that points to the ContentRange
element. Removing a ContentMark from the body also removes its owner element. The Delete() method on a
ContentRange usually removes its ContentMarks only. Complex fields are an exception to this as its actual internal
content is also deleted.

Complex Fields

Despite the fact that the complex field inherits from ContentRange, it actually is a combination of ContentRange and
ContentObject. Bounds of a complex field are defined by special field characters (see the FieldChar class and the
associated enum that defines the type of the field character as Begin, Separator or End values). The complex field can
contain two ranges, code range and result range, separated by a Separator field character.

The code range usually contains one or several codes (see FieldCode class) that in turn contain instructions on how to
calculate the field's result. The result range contains cached result of the instructions. In the current version, DsWord
does not yet calculate instructions, so it does not update the result.

As mentioned above, unlike other ContentRange elements, the Delete() method on a complex field removes not only
the field characters from the body but the field codes and the result too.

Section

Sections can only be present in the main body, and any document must have at least one section.

Sections allow to change page formatting for the document parts; PageSetup property and headers or footers
collections of a section provide the means to do that. Each section can have its own headers or footers and page

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 22

formatting.

Headers and footers display on each page of the section and they have their own bodies to store their content. There
are several types of headers or footers in a section (see HeaderFooterType enum) and each header or footer can be
linked to the same type from a previous section, so you do not have to create identical headers or footers for each
section.

Run

A run is a contiguous fragment of a body content with uniform formatting. So, a run is the primary means to change
character formatting. It is also a container for all other inline elements (excluding simple fields and hyperlinks).

Nesting elements

The top elements in the main body are the sections. For other body types, the top elements can be paragraphs, tables
and content marks (see ContentRange).

Usually elements with the same type cannot be nested (for example, a Run cannot be nested within another Run).
Only SimpleField and Hyperlink can be nested. Also, a cell in a table can contain another table within its own cells.

Styles

Styles is the main means allowing to apply formatting to a document's content. DsWord provides 375 built-in styles.
There are different style types (see StyleType enumeration). Each type of style can be applied only to the
corresponding content type. You can get any built-in type using BuiltInStyleld enumeration.

The StyleCollection class has default styles which can be fetched or set using its GetDefaultStyle(StyleType)

or SetDefaultStyle(StyleType, Style) methods. These styles are applied to content that does not have an explicitly
specified style. StyleCollection provides the DefaultFont and DefaultParagraphFormat properties which are used by
default for the default styles.

Some styles are linked. A linked style is a grouping of a paragraph style and character style which is used in a user
interface to allow the same set of formatting properties. For example, if you want to apply Heading 1 paragraph style
to a run, you can apply it using Document.Styles[BuiltinStyleld.Heading1].LinkStyle.

Formatting inheritance

DsWord allows to get the actual formatting values of elements. It takes into account the formatting inheritance from
default document formatting, base style formatting, applied style formatting, parent content formatting and direct
formatting of the element.

ListTemplates

DsWord provides 21 built-in list templates to create lists in the document. The formatting of these templates is the
same as in Microsoft Word built-in list templates. There is no "list" class in DsWord. To create a list you need to

set ListFormat.Template and ListFormat.LevelNumber (for multilevel lists) properties on each paragraph that should be
in the list.

Settings

The Settings class allows to set properties that apply to the whole document, add custom document properties,
control document variables, detect and remove document macros, and change view options.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 23

Features

This section comprises the features available in DsWord.

Comments

Add, modify, and delete comments and comment replies in DsWord.
Content Controls

Work with content controls in DsWord.
Glossary Document

Maintain the collection of building blocks in Glossary document in DsWord.
Document

Manage various document related operations in DsWord.
Export

Export Word documents to PDF and image file formats in DsWord.
Fields

Add, modify, and delete fields in DsWord.
Footnotes and Endnotes

Add, modify, and delete footnotes and endnotes from a Word document in DsWord.
Font

Define custom fonts, embed them in a Word document and apply them to the runs in DsWord.
Header and Footer

Add, modify, and delete header and footer from a Word document in DsWord.
Images

Add image from file/stream, extract, edit, and delete images from a Word document in DsWord.
Shapes

Add various shapes like textbox, canvas, group, ink etc and apply shape format and shape styles in DsWord.
Office Math

Add and display the Office Math content in DsWord.
Links

Add, modify, and delete hyperlinks and bookmarks from a Word document in DsWord.
Lists

Word with lists and list templates in DsWord.
Paragraph

Work with paragraph and its properties in DsWord.
Range Objects

Work with range objects in DsWord.
Sections

Work with sections and section breaks in DsWord.
Table

Work with tables, cells and rows in DsWord.
Text

Work with text objects in DsWord.
Themes

Change the theme color and font of a Word document in DsWord.
Helper Methods for Adding Content

Add various content elements using helper methods to a Word document in DsWord.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 24

Comments

A comment is a note or a type of annotation which is usually added to a document when a user wants to add remarks,
notes, reminder, or a feedback to it. For instance, when multiple users work on the same document, it becomes easy
for them to leave a note, remarks or feedback for each other's reference.

In DsWord, comments are represented by the Comment class. It allows you to modify the content and other
properties of the comments, such as, author, date of the comment, etc. DsWord allows you to add or insert comments
in a Word document using Add or Insert method of the CommentCollection class respectively. In addition, it lets you
add and delete the comment replies as well. You can use Reply method of the Comment class to add a new comment
as a reply into the comments collection and the Delete method to delete it.

Doy 9-0 = AdaéComment - Microsoft Word = 0 »
Vi
Hame Ingedd Page Layout References Mailings Renew Wiew LE]
=N & == = = = - 4 Find -
o Calibri [Body) LR MR R - 8- (LT AaBbCeDe | fagbCede AaBbCi AaBbCc && & Reptace
s
Pute (B U -dex X Ac[¥V-A EEEE(E S S WNormal J1 Mo Spacl..| Heading 1 || Heading 2 [RCECRRRHRRNEInR
Chpbaard = Font # Faragraph # Chyles I Editing
E l-]‘-l-l-r-:f;' .II ;] -....; .;,I.|....-..I.. - -'. ::..- 1] .I.:. :._;...:._; Ly 0 AT 0 3R IS
o
Hello World]| .o-| Comment [1]: Commartarom]
| Comment [2]: Razly of 10 siced |
Thisis a sample text. | E—
Type the text of your document here. The galleries for tables, headers & footers, lists,
coverage pages, and other document building blocks may include additional items that are
designed to coordinate with the overall lock of this template.

When you click on this text and type, these paragraphs will be replaced with your ewn
content. You can add text boxes to hold quotes or sidebar content by using the textbox
gallery on the Insert tab. You can also insert pictures, charts, or diagrams into the document.

Techange the averall lock of the document, you can change the theme elements used by
selecting new alements on the Page Setup tab. You can change the formatting of the text in

the document by changing the Quick Styles set that is in use via the gallery on the Write tab. .- | Commet [WOS]: correction requres |
Both galleries offer commands to allow you to reset the look of your document to those 7| Comment [MGLAE Tam commen |
. stored inthe tamplate. "7 Comment [WUS]: chack]
: - { Comment [MGSE Carmstion e |
= ': Co t [7]: Ragly Comerane Derm]

Page 1ol Werde 165 5 English Ingdia) "EE

Add Comments

To add comments in a document:

1. Access the content object on which you want to add a comment. For example, access the first paragraph.
2. Access the comment collection using Comments property of the RangeBase class.
3. Add a comment to the paragraph using Add method of the CommentCollection class.

C#

doc.Load ("CommentInWord.docx") ;

//Access the first paragraph

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 25

Paragraph par = doc.Body.Sections.First.GetRange () .Paragraphs([0];

//Add comment
Comment c=par.GetRange () .Comments.Add ("CommentByCode","GC") ;

//Save the document

doc.Save ("AddComment .docx") ;
Back to Top

Modify Comments

To modify a comment through code:

1. Access a comment from the comment collection using the Comments property. For example, access the first
comment.

2. Get the property of the comment you want to modify. For example, access Author and Initials properties of the
first comment.

3. Modify the value of the properties. For example, set value of the Author property to DsWordUser and Initials
property to G.C.W.

C#
doc.Load ("AddComment .docx") ;

//Access the first paragraph
Paragraph par = doc.Body.Sections.First.GetRange () .Paragraphs([0];

//Modify the first comment's author and initials
par.GetRange () .Comments[0] .Author = "DsWordUser";
par.GetRange () .Comments[0] .Initials = "D.S.W";

//Mark the comment reply as closed
par.GetRange () .Comments[0] .Done = true;

doc.Save ("ModifiedComment.docx") ;
Back to Top

Delete Comments

To delete a comment:

1. Access a comment from the comment collection using the Comments property. For example, access the fourth
comment in the document.
2. Delete the comment using Delete method of the Comment class.

C#

doc.Load ("CommentInWord.docx") ;
//Delete the second comment

doc.Body.Comments[3] .Delete();
doc.Save ("DeleteComment.docx") ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 26

Back to Top

Add Comment Reply

To add a reply on a comment:

1. Access a comment from the comment collection using the Comments property. For example, access the
second comment.

2. Add a new comment in the comment collection as a reply for the accessed comment using Reply method of
the Comment class.

C#

doc.Load ("CommentInWord.docx") ;

//Add comment reply for the last comment in the document
doc.Body.Comments.Last.Reply ("Reply Comment", "John Doe");

//Add a comment reply
Comment cReply = c.Reply("Reply of the added comment", "JD");

//Mark the comment reply as closed
cReply.Done = true;

//Save the document
doc.Save ("AddComment .docx") ;

Back to Top

Delete Comment Reply

To delete a reply on the comment:

1. Access a reply comment using Replies property of the Comment class. For example, access first reply of the
first comment.
2. Delete the comment reply using Delete method of the Comment class.

C#

//Delete first comment's first reply
doc.Body.Comments.First.Replies[0] .Delete();

doc.Save ("DelComment.docx") ;

Back to Top

For more information on how implement comments using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/basics/content/comments/code-cs

Document Solutions for Word 27

Content Controls

DsWord provides different types of content controls that help in organizing the content of a document in a structured
manner. They are often used for creating templates and forms. They provide the flexibility to position the content and
deny or allow editing of controls.

For example, consider a scenario of a company event. Thousands of invite forms need to be generated which will have
the company address by default. Since the same address needs to be replicated over all the invite forms, this can be
done by using Repeating Section content control. Also, in case the company address needs to be changed, the value
of address field will be updated only in the Repeating Section control and it will automatically reflect in all the invite
forms.

DsWord library supports content controls which are represented by the ContentControl class. In fact, there are various
types of content controls which are represented by the enum ContentControlType and are explained below:

Type Description

Plain text A plain text control is restricted to write plain text only.

Rich text A rich text control contains formatted text as well as other items like tables, pictures
etc.

Picture A picture control displays a single image in the content control.

ComboBox A combo box can contain any arbitrary text and also displays a list of values which can

be selected from a drop down.
Drop down list A drop-down list displays a list of items out of which only one can be selected.
Date A date control provides a calendar for selecting a date.

CheckBox A check box provides the option to represent the binary state: checked or unchecked.

Building block gallery

Group

Repeating Section
RepeatingSectionltem
BuildingBlock
Equation

Bibliography

Citation

ExternalContentEntityPicker

A building block gallery allows to select from a list of building blocks to insert into a
document.

A group control represents a protected region which users cannot edit or delete.
A repeating section control acts as a container for repeated items.

A repeating section item specifies that the content control is a repeated item.

A building block is a pre-designed and pre-formatted block of text and formatting.
An equation specifies that the content control shall be of type equation.

A bibliography specifies that the content control shall be of type bibliography.

A citation specifies that the content control shall be of type citation.

An external content entity picker control allows the user to select an instance of an
external content type.

DsWord allows you to add, modify, and delete content controls from a Word document. A content control can be
created using the Add or Insert method of the ContentControlCollection class. It can be modified using the
ContentControl class properties, and deleted using Delete method of the ContentControl class.

Create Content Control

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 28

To create a content control:

1. Create a new Word document by instantiating the GcWordDocument class.

2. Add a paragraph using Add method of the ParagraphCollection class.

3. Create a content control of type plain text using the Add method of ContentControlCollection class.

4. Configure the content control by setting its properties.

5. Add text to the content control using Add method of the ParagraphCollection class.
C#
GcWordDocument doc = new GcWordDocument () ;
doc.Body.Sections.First.GetRange () .Paragraphs.Add ("This sample demonstrates
creation/insertion of content controls in a Word document");
Style paraStyle = doc.Styles.Add("paraStyle", StyleType.Paragraph);
paraStyle.Font.Bold = true;
paraStyle.Font.Size = 12;
doc.Body.Sections.First.GetRange () .Paragraphs.Add ("Employee Name: ", paraStyle);
//Create a content control of type plain text and add static text to it
ContentControl cc plainText =
doc.Body.ContentControls.Add (ContentControlType.Text, false);
cc_plainText.Appearance = ContentControlAppearance.BoundingBox;
cc_plainText.LockContents = false;
cc_plainText.LockControl = true;
cc_plainText.Content.GetRange () .Paragraphs.Add ("Robert King");
doc.Save ("ContentControls.docx") ;

Back to Top

To create a content control using custom placeholder text:

1. Create a new Word document by instantiating the GcWordDocument class.

2. Add a content control of type plain text using the Add method of ContentControlCollection class.

3. Create a building block that defines the custom placeholder text using the Add method of
BuildingBlockCollection class.

4. Add the custom placeholder text to the building block by adding a paragraph to it.

5. Assign the value of the custom placeholder text to the content control's placeholder text by setting the
PlaceHolderText property of the content control.

C#

GcWordDocument doc = new GcWordDocument () ;
doc.Body.Sections.First.GetRange () .Paragraphs.Add ("Job Title: ", paraStyle);

//Create a content control of type rich text with custom placeholder
ContentControl cc_custom =

doc.Body.ContentControls.Add (ContentControlType.Text) ;

BuildingBlock placeholder =

doc.GlossaryDocument.BuildingBlocks.Add ("placeholder", "General",
BuildingBlockGallery.Placeholder, BuildingBlockInsertOptions.Content,
BuildingBlockType.ContentControlPlaceholder) ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 29

Paragraph p = placeholder.Body.Paragraphs.Add ("Enter your job title:");
p.GetRange () .Runs.First.Style =
p.ParentBody.Document.Styles[BuiltInStyleId.PlaceholderText];
cc_custom.PlaceholderText = placeholder; // attach the custom placeholder to the

content control

doc.Save ("ContentControls.docx") ;

Back to Top

Modify Content Control

To modify a content control:

1. Load the document using Load method of GcWordDocument class.

2. Access the content control which needs to be modified using ContentControls property of RangeBase class.
3. Clear the existing text in the content control using the Clear method of RangeBase class.

4. Add new text to the content control using the Add method of the ParagraphCollection class.

C#

GcWordDocument doc = new GcWordDocument () ;
doc.Load ("ContentControls.docx") ;

//Retrieves the content control and modifies its content
ContentControl contentControl = doc.Body.ContentControls[0];
contentControl.Content.GetRange () .Clear ()
contentControl.Content.GetRange () .Paragraphs.Add ("Andrew Fuller");

doc.Save ("ContentControl Modified.docx");
Back to Top

Delete Content Control

To delete a content control:

1. Load the document using Load method of GcWordDocument class.
2. Access the content control which needs to be deleted using the ContentControls property of RangeBase

class.

3. Delete the content control using Delete method of the ContentControl class.
C#
GcWordDocument doc = new GcWordDocument () ;

doc.Load ("ContentControls.docx") ;
//Retrieves the first content control and deletes it
ContentControl contentControl = doc.Body.ContentControls.First;

contentControl.Delete () ;

doc.Save ("ContentControl Deleted.docx");

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 30

Back to Top

Bind Content Controls to Custom XML parts

DsWord supports binding content controls to XML data using custom XML parts. Custom xml parts are used to
embed XML data in documents for some Microsoft Office applications. Any change that is made to the text in a
content control is saved to the custom XML part and vice versa. DsWord allows you to bind content controls to
elements in a custom XML part using the XmIMapping class.

To bind the content control to custom XML parts:

Create and load an XML document using Load method of XmIDocument class.

Use Add method of CustomXmlPartCollection to embed the XML data to the word document.
Create a content control of type plain text which will be bound to the custom XML part.

Bind the content control to an element in the custom XML part using the SetMapping method of
XmlIMapping class.

C#

Moo=

GcWordDocument doc = new GcWordDocument () ;

doc.Body.Sections.First.GetRange () .Paragraphs.Add("This sample demonstrates the
binding of content controls to custom XML parts ");

Style paraStyle = doc.Styles.Add("paraStyle", StyleType.Paragraph);
paraStyle.Font.Bold
paraStyle.Font.Size

true;
12;

//Create an XML document
XmlDocument xmlDoc = new XmlDocument () ;

xmlDoc.Load ("Employees.xml") ;
//Add the XML document to the custom XML part

string xmlPartId = Guid.NewGuid () .ToString() ;
doc.CustomXmlParts.Add (xmlDoc, xmlPartId);

doc.Body.Sections.First.GetRange () .Paragraphs.Add ("Employee Name: ", paraStyle);

//Create a content control of type plain text

ContentControl plainTextContentControl =

doc.Body.ContentControls.Insert (ContentControlType.Text, InsertLocation.End);
//bind the content control to element in the custom XML part using XPath
expression

plainTextContentControl.XmlMapping.SetMapping ("/employees/employee[l]/name[1]",
null, xmlPartId);

doc.Save ("XMLMapping.docx") ;
Back to Top

Bind Content Controls to Built-in Properties

DsWord allows you to bind content controls to built-in document properties (like Application name, Title, Last saved
time, Version, Author, Category etc). The SetMapping method of XmIMapping class takes the property name as a

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

parameter to establish the binding.

To bind the content control to built-in properties:

1. Create a new Word document by instantiating the GcWordDocument class.

2. Set the value of a built-in property 'Author' using the BuiltinProperties property of the
BuiltinPropertyCollection class.

3. Create a content control of type plain text which will be bound to the built-in property.

4. Map the content control to built-in property using the SetMapping method of XmIMapping class.

C#

GcWordDocument doc = new GcWordDocument () ;

doc.Body.Sections.First.GetRange () . Paragraphs.Add ("Document Author: ",
paraStyle);

doc.Settings.BuiltinProperties.Author = "James Smith"; // set a built-in
property value

// Add a new content control of type plain text for the built-in property

ContentControl cc builtInProp =

doc.Body.ContentControls.Insert (ContentControlType.Text, InsertLocation.End);

/*map the built-in property value with the content control. Now when a user
changes the content control value the built-in property will be changed

automatically*/

string author = cc_builtlInProp.XmlMapping.SetMapping(() =>

doc.Settings.BuiltinProperties.Author);

doc.Save ("XMLMapping.docx") ;

Back to Top

For more information on how implement comments using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

31

https://developer.mescius.com/documents-api-word/demos/basics/miscellaneous/content-controls/code-cs

Document Solutions for Word

Glossary Document

32

A glossary document is a supplementary storage which stores the content, such as AutoText/Buildingblock entries that you do
not want to appear in the document, but want to keep it as the part of document for future insertion, if needed. DsWord
provides the capability of maintaining a GlossaryDocument for a Word document to store the BuildingBlocks content. It is

represented using the GlossaryDocument class.

GlossaryDocument class maintains the collection of building blocks using the BuildingBlockCollection class. The

BuildingBlockCollection class provides Add and Remove method to add and remove the blocks from the glossary document

respectively.

Building blocks is an essential feature of word which allows you to insert blocks of information in the document. These blocks
of information can be reusable chunks of content or pre-designed and pre-formatted blocks of text and formatting. DsWord

allows you to create, modify and delete building blocks using the BuildingBlock class.

Create Building Block in Glossary Document

To create and add building blocks in a glossary document:

1. Create an instance of the GcWordDocument class to create a document. The GlossaryDocument property of this class

returns the Glossary Document specific to the Word document.
2. Add the building block to the Glossary document using the Add method of BuildingBlockCollection.

C#

GcWordDocument doc = new GcWordDocument () ;

//Adds a building block that contains text

BuildingBlock bbl = doc.GlossaryDocument.BuildingBlocks.Add("Mission Statement",
"CompanyInfo", BuildingBlockGallery.AutoText, BuildingBlockInsertOptions.Content,
BuildingBlockType.None) ;

Style paraStyle = bbl.Body.Document.Styles.Add("paraStyle", StyleType.Paragraph);

paraStyle.Font.Bold = true;
bbl.Body.Paragraphs.Add ("To serve our customers by helping them to achieve their
goals", paraStyle);

//Save the document (Note:Building blocks can be saved in dotx and docx, but in the

docx format, MS Word UI won't show them)
doc.Save ("CustomBuildingBlocks.dotx", DocumentType.Template);

Back to Top

Remove Building Block from Glossary Document

To remove building block from glossary document:

1. Load the document using Load method of GcWordDocument class.

2. Invoke Remove method of the BuildingBlockCollection class to remove the building block from glossary document.

C#

GcWordDocument doc = new GcWordDocument () ;
doc.Load ("CustomBuildingBlocks.dotx") ;

doc.GlossaryDocument.BuildingBlocks.Remove (doc.GlossaryDocument.BuildingBlocks.First) ;

Back to Top

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 33

Document

In DsWord, a document is represented by the GcWordDocument class which is the main class that contains document
properties. The GcWordDocument class provides access to the main functionality, such as creating, loading, and
saving of documents.

In this section, you learn how to work with the following:

Document Properties

Document Styles

Document Protection

Document Formatting Source
Copy or Move Document Content
Split or Merge Documents

Page Settings

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 34

Document Properties

Apart from content, a Word file holds some additional information in the form of document properties. These
properties define various attributes of document as a whole.

DsWord provides following document properties through the GcWordDocument class:

Body
DsWord allows you to access the body of the document using the Body property, which contains the text that
excludes headers, footers, footnotes, text boxes, etc.

List Templates
DsWord provides the ListTemplates property to get a collection of list templates in the document.

Document Styles
DsWord allows you to access the collection of styles defined in the document using the Styles property.

Theme
DsWord provides the Theme property to get a theme that holds all the different formatting options available to a
document through the theme.

Settings
DsWord provides the Settings property which gives you options to control various settings of a Word document,
such as:

e Compatibility options: These options influence how the document content appears and are handled
using the CompatibilityOptions class which can be accessed using CompatibilityOptions property of
the Settings class.

® View Options: These options in Word documents lets you control the view and layout of a document.
They are handled through the ViewOptions class which can be accessed using ViewOptions property of
the Settings class.

e Hyphenation options: These options are useful to render text in different marginal or justified settings by
breaking words in between the lines to bring more consistency in text. The options are handled using
the HyphenationOptions class which can be accessed using HyphenationOptions property of the Settings
class.

Document Solutions for Waord library, referred to as DsWord, is a part of Documeant Solutions.
Testtextforhyphenation. Ds\Word aims to be a complete solution to program and work with Word documents,
without using any external word processor like M3 Word.

Testtextforhyphenation Testtextiorhyphenation.
DsWord is a high performance library which is supported on .MET Standard 2.0 and can be used to create, load,
modify, and save Word documents programmatically.

Get Document Properties

To get the document properties, for example, compatibility mode and hyphenation options:

1. Get access to the document compatibility options using Settings.CompatibilityOptions property.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 35

2. Get the document compatibility mode using CompatibilityMode of the CompatibilityOptions class. This will
give you the version of Word document.

3. Get the maximum number of consecutive lines that can end with hyphens using ConsecutiveHyphensLimit
property of the HyphenationOptions class.

4. Display the compatibility mode version and number of consecutive lines that can end with hyphens on the
console.

C#

doc.Load ("SampleDoc.docx") ;

//get document compatibility mode
WordVersion version = doc.Settings.CompatibilityOptions.CompatibiltyMode;

//Get the maximum number of consecutive lines that can end with hyphens
ushort limit = doc.Settings.HyphenationOptions.ConsecutiveHyphensLimit;

//Display the compatibility mode version on the console
Console.WriteLine ("\n WordVersion: " + version);

//Display the maximum number of consecutive lines that can end with hyphens
Console.WriteLine ("\n consecutive lines ending with hyphens: " + limit);

Back to Top

Set Document Properties

To set the document properties, for example, compatibility mode and hyphenation options:

1. Get access to the document compatibility options using Settings.CompatibilityOptions property.

2. Set the document compatibility mode using CompatibilityMode of the CompatibilityOptions class, which
takes the value from the WordVersion enumeration.

3. Set the automatic hyphenation for the document using AutoHyphenation property of the
HyphenationOptions class by providing a Boolean value.

C#

doc.Load ("SampleDoc.docx") ;

//set document compatibility mode
doc.Settings.CompatibilityOptions.CompatibiltyMode = WordVersion.Word2007;

//Enable automatic hyphenation for the document
doc.Settings.HyphenationOptions.AutoHyphenation = true;

//Save the modifed Word file
doc.Save ("SetDocProperties.docx") ;

Back to Top

Set View Options

DsWord provides various options to control how a document is displayed in an application through the ViewOptions
class, which can be accessed using the ViewType property. It helps you display the page in different view modes such
as master document view, draft view, outline view, print view and webpage view. DsWord also lets you set the zoom

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 36

levels using the ZoomType property of the ViewOptions class. The different zoom modes available are BestFit,
FullPage, TextFit and None. In addition, the ViewOptions class lets you specify the zoom percentage using the Zoom
property.

To set various viewing options, for example, view type, the zoom percentage and zoom type:

1. Access the viewing options using Settings.ViewOptions property.

2. Set the view mode using ViewType property of the ViewOptions class which accepts value from the ViewType
enumeration.

3. Set the zoom value using ZoomType property of the ViewOptions class which accepts value from
the ZoomType enumeration.

4. Set the zoom percentage using Zoom property of the ViewOptions class.

Z Note: Microsoft Word ignores these properties set through the ViewOptions class while displaying a document
as it reads the properties directly from the Windows registry.

C#

doc.Load ("SampleDoc.docx") ;

//set view type

doc.Settings.ViewOptions.ViewType = ViewType.Print;

//set zoom type
doc.Settings.ViewOptions.ZoomType = ZoomType.Fullpage;

//set zoom percentage
doc.Settings.ViewOptions.Zoom = 150;

doc.Save ("ViewOptionsAdded.docx") ;

Back to Top

For more information on how implement document properties using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/

Document Solutions for Word 37

Document Protection

Document protection is an essential feature in Word documents to restrict unauthorized access. The DsWord library provides
the DocumentProtection class to protect the Word documents. With the properties in the DocumentProtection class, you can now
add editing restrictions, write protections, document theme, style protections etc. to your document.

Password

With Password protection in DsWord, you can perform one of the following:

® Open the document in edit mode in case you provide the password.
® Open the document in ReadOnly mode without providing the password. You can make changes to the document but

cannot save them in the same file.

Password 7 >

‘PasswordProtection.doot’ is reserved

Enter password to modify, or open read only.

Password: |

Read Only Cancel

To set a password:

1. Load a document using the Load method of GcWordDocument class.
2. Set a password using the SetPassword method of Password class, which can be accessed using the WritePassword property

of DocumentProtection class.
C#

//Load the Word document
GcWordDocument doc = new GcWordDocument () ;
doc.Load ("SampleDoc.docx")) ;

//Set the write protection password for the document
doc.Settings.DocumentProtection.WritePassword.SetPassword ("abc") ;

//Save the document
doc.Save ("PasswordProtection.docx") ;

] Note: User passwords or protection settled in this way can be removed using raw docx modification in any moment. It is not
"strong" cryptographic protection.

Back to Top

ReadOnly

This is a special ReadOnly mode that recommends users to open the document as read-only. When this mode is set, the below
dialog appears in Word:

Microsoft Word pd

0 The author would like you to open this as read-only, unless you need to make changes, Open as read-only?

Yes Mo Cancel

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 38

® Yes - Opens the file in ReadOnly mode. You can make changes to the document but cannot save them in the same file.
® No - Opens the document in edit mode.
® Cancel - Closes the document.

To set ReadOnlyRecommended mode:

1. Load a document using the Load method of GcWordDocument class.
2. Set the ReadOnlyRecommended property of the DocumentProtection class to true.

C#

//Load the Word document
GcWordDocument doc = new GcWordDocument () ;
doc.Load ("SampleDoc.docx")) ;

//Recommends users to open a document as read-only

doc.Settings.DocumentProtection.ReadOnlyRecommended = true;

//Save the document

doc.Save ("ReadOnlyRecommendedpassword.docx") ;
Back to Top

Mark as Final

Mark as Final mode makes the document read-only. However, you can make changes in the document by clicking the 'Edit Anyway"
option in dialog box.
To set a document to Mark as Final:

1. Load a document using the Load method of GeWordDocument class.
2. Set the MarkAsFinal property of the DocumentProtection class to true.

C#

//Load the Word document

GcWordDocument doc = new GcWordDocument () ;
doc.Load ("SampleDoc.docx")) ;

//Marks a document as Final

doc.Settings.DocumentProtection.MarkAsFinal = true;

//Save the document
doc.Save ("MarkAsFinal.docx") ;

Back to Top

Editing Restrictions

DsWord supports editing restrictions to limit the user's ability to edit text in the document. You can apply certain edit modes to the
document by using the EditProtectionMode enumeration.

The IsActive property of EditProtection class should be set to true in order to enforce the editing restrictions. You can also set a
password using the Password property of EditProtection class which enables only the users with password to remove the editing
restrictions from the document.

Edit modes Description

AllowOnlyReading Allows read-only access to the document except regions(ranges) with defined editor rights.
AllowOnlyComments Allows only comments to be added to the document.

AllowOnlyFormFields Allows content to be added to the document only through form fields

NoProtection Does not apply any protection to the document.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 39

Load a document using the Load method of GcWordDocument class.

Set the enum value of EditProtectionMode to AllowOnlyComments using the EditMode property of EditProtection class.
Set the IsActive property of EditProtection class to true.

Set the password using SetPassword method of Password class which can be accessed using EditProtection property of
DocumentProtection class

A=

C#

//Load the Word document

GcWordDocument doc = new GcWordDocument () ;
doc.Load ("SampleDoc.docx")) ;

//Specify the protection mode for a document
doc.Settings.DocumentProtection.EditProtection.EditMode =
EditProtectionMode.AllowOnlyComments;

//Set a password so that wusers who know the password can remove the protection and work
on the document

doc.Settings.DocumentProtection.EditProtection.Password.SetPassword("abcl23");

//enforce document protection

doc.Settings.DocumentProtection.EditProtection.IsActive = true;

//Save the document

doc.Save ("EditingRestrictions.docx");
Back to Top

Editable Ranges

Editable ranges are specific regions in a read-only document, which can be edited or modified by users or groups with editing
rights. To enable editable ranges, the IsActive property of EditProtection class should be set to true and the edit mode should be
set to AllowOnlyReading. The whole document behaves as ReadOnly, except the editable ranges for defined users or groups.

To create editable ranges:

1. Create a new document and add a paragraph using the Paragraphs property of RangeBase class

2. Add editable range for the first paragraph using Add method of EditableRangeCollection class. To grant editing rights to
everyone, Everyone value of EditorGroup enumeration has been passed to the GroupEditor method.

3. Add second paragraph and add editable range to it using Add method of EditableRangeCollection class. To grant editing

rights to a specific user,the user IDhas been passed to UserEditor method.

Add third paragraph to the document.

Set the enum value of EditProtectionMode to AllowOnlyReading using the EditMode property of EditProtection class.

Set the IsActive property of EditProtection class to true.

Set the password using SetPassword method of Password class which can be accessed using EditProtection property of

DocumentProtection class

C#

No v s

GcWordDocument doc = new GcWordDocument () ;

//add first paragraph
var firstPara = doc.Body.Paragraphs.Add("First paragraph");

//add new EditableRange for the first paragraph and allow everyone to modify it
firstPara.GetRange () .EditableRanges.Add (new GroupEditor (EditorGroup.Everyone)) ;

//add second paragraph
var secondPara = doc.Body.Paragraphs.Add ("Second paragraph");

//add new EditableRange for the second paragraph and allow a specific user to to modify it

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 40

secondPara.GetRange () .EditableRanges.Add (new UserEditor ("google\\abc.xyz"));

//add third paragraph
doc.Body.Paragraphs.Add ("Third paragraph");

//set document region protection mode

doc.Settings.DocumentProtection.EditProtection.EditMode
EditProtectionMode.AllowOnlyReading;

//enforce document protection
doc.Settings.DocumentProtection.EditProtection.IsActive = true;
//Set EditProtection Password

doc.Settings.DocumentProtection.EditProtection.Password.SetPassword("123");

//now, first paragraph can be edited by everyone.
//Second paragraph can be edited by a specific user
//rest of the document is ReadOnly

doc.Save ("EditableRanges.docx") ;

Back to Top
To delete Editable ranges:

1. Load the document and access the editable paragraph using the Paragraphs property of RangeBase class
2. Delete the editable range using the Delete method of EditableRange class.

C#

GcWordDocument doc = new GcWordDocument () ;

//Load the document
doc.Load ("EditableRanges.docx") ;

//Get the editable paragraph
var para = doc.Body.Paragraphs[l];

//Delete the EditableRange using the Delete method
para.GetRange () .EditableRanges[0] .Delete () ;

//Save the document
doc.Save ("EditableRange Deleted.docx");

Back to Top

Formatting Restrictions

Formatting restrictions provide various properties to restrict the formatting changes that can be applied to a document. These
properties are described below:

Properties Description
EditProtection.LimitFormattingToUnlockedStyles Styles with "locked" attribute are not available for use.
EditProtection.AllowAutoformatToOverrideFormatRestrictions Auto-formatting can override formatting restrictions.
DocumentProtection.BlockThemeOrSchemeSwitching Blocks the ability to change the theme.

DocumentProtection.BlockQuickStylesetSwitching Blocks the ability to change the Style Set.

To set formatting restrictions using the properties of EditProtection class:

The IsActive property of EditProtection class should be set to true to enforce the formatting restrictions. You can also set a
password using the Password property of EditProtection class which enables only the users with password to remove these
formatting restrictions from the document.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 41

1. Load a document using the Load method of GeWordDocument class.

2. Lock the Heading1 and hyperlink style by setting the Locked property of Style class to true.

3. Set the LimitFormattingToUnlockedStyles and AllowAutoformatToOverrideFormatRestrictions properties of EditProtection
class to true.

4. Set the IsActive property of EditProtection class to true.

5. Set the password using SetPassword method of Password class which can be accessed using EditProtection property of
DocumentProtection class.

C#

//Load the Word document

GcWordDocument doc = new GcWordDocument () ;
doc.Load ("SampleDoc.docx")) ;

//Lock the Headingl style (Note that this style will not be available for use
//in the Word document when the LimitFormattingToUnlockedStyles property of
//the EditProtection class 1is set to true)

Style headingl Style = doc.Styles[BuiltInStyleId.Headingl];

headingl Style.Locked = true;

//Lock the Hyperlink style (Note that this style will not be available for use
//in the Word document when the LimitFormattingToUnlockedStyles property of

//the EditProtection class is set to true. However this style will be available
//when AllowAutoformatToOverrideFormatRestrictions property of the EditProtection
//class 1is set to true automatically formatting hyperlinks)

Style hyperlink style = doc.Styles[BuiltInStyleId.Hyperlink];

hyperlink style.Locked = true;

//Limit formatting to the unlocked styles
doc.Settings.DocumentProtection.EditProtection.LimitFormattingToUnlockedStyles = true;

//Allow using locked styles when automatically formatting text such as hyperlinks or
automatic bullets

doc.Settings.DocumentProtection.EditProtection.AllowAutoformatToOverrideFormatRestrictions
= true;

//enforce formatting restrictions
doc.Settings.DocumentProtection.EditProtection.IsActive = true;

//Set a password so that users who know the password can remove the protection and work
on the document

doc.Settings.DocumentProtection.EditProtection.Password.SetPassword ("123");

//Save the document
doc.Save ("FormattingRestrictions.docx") ;

Back to Top

To set formatting restrictions using the properties of DocumentProtection class:
["§| Note: These restrictions can be removed by any user as passwords cannot be set on these properties.

1. Load a document using the Load method of GeWordDocument class.
2. Set the BlockThemeOrSchemeSwitching or BlockQuickStylesetSwitching properties of the DocumentProtection class to
true.

C#

//Load the Word document

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

GcWordDocument doc = new GcWordDocument () ;
doc.Load ("SampleDoc.docx"));

//Prevent users from changing the themes used in the document
doc.Settings.DocumentProtection.BlockThemeOrSchemeSwitching = true;

//Prevent users from changing the current style set
doc.Settings.DocumentProtection.BlockQuickStylesetSwitching = true;

//Save the document

doc.Save ("FormattingRestrictions.docx") ;

Back to Top

© 2024 MESCIUS inc. All rights reserved.

42

Document Solutions for Word 43

Document Formatting Source

Usually, in a Word document, the content formatting is picked from default document style, parent content
formatting or direct formatting. In order to detect the source of formatting properties, DsWord library provides
the GetPropertyValueSource method in GeWordDocument class. This feature is useful for users, who want to
programmatically determine the formatting source of Word objects in documents.

The GetPropertyValueSource method takes the formatting “property" as a parameter to find and return the object in
the inheritance chain which is the source of the formatting property.

If the target property's value is determined by an object in the inheritance hierarchy, the type of the object returned
by the GetPropertyValueSource method can be one of:

Paragraph

Run

Table

Row

Cell
ContentControl
Style
ConditionalStyle
StyleCollection
ListLevel
PageSetup
Settings

If the property belongs directly to an object, that object will be returned (and it can be of any type)
Detect Source Object of Formatting Properties

To detect source of a paragraph's formatting properties:

1. Create an instance of GcWordDocument and load the Word document having styles.
2. Get a source object of the "Font.Size" property set for a run within a paragraph formatted with Heading 1 style.

C#

public static void DetectFormatting()

{
//Create a new GcWordDocument
GcWordDocument doc = new GcWordDocument () ;

//Get Heading 1 style
Style style = doc.Styles[BuiltInStylelId.Headingl];

//Add a run within a paragraph formatted with Heading 1 style
doc.Body.Paragraphs.Add ("text", style);

//Get a source object of the "Font.Size" property from the created run
object source = GcWordDocument.GetPropertyValueSource(() =>

doc.Body.Runs.First.Font.Size);

//The source object must be "Headingl" style because the font size is
defined here.
Console.Write ("Formatting source name: " + ((Style)source) .Name);

Console.ReadLine () ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 44

Back to Top

For more information on how to modify theme colors using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/basics/miscellaneous/get-style-source/code-cs

Document Solutions for Word 45

Copy or Move Document Content

Copying or moving content in documents helps in organizing the document content in a relevant manner.

DsWord allows you to perform the copy or move operations on document content within the document or between documents. The CopyTo
and MoveTo methods in the RangeBase class are used to achieve the same. While performing the copy or move operations, the formatting settings
of the content can also be copied or cleared using the FormattingCopyStrategy enumeration.

Copy Document Content

To copy content within a document with or without formatting:

1. Load a document using the Load method of GcWordDocument class.

2. Copy the second paragraph after the third paragraph using the CopyTo method of the RangeBase class. To keep the formatting of content
control, the Copy value of FormattingCopyStrategy enumeration has been passed as a parameter to the CopyTo method.

3. Copy the table after the fourth paragraph in the document. To clear the formatting of table, the Clear value of FormattingCopyStrategy
enumeration has been passed as a parameter to this method.

C#

var doc = new GcWordDocument () ;
doc.Load ("Test.docx") ;

//Copy the second paragraph after the third paragraph with formatting
doc.Body.Paragraphs[1l].GetRange () .CopyTo (doc.Body.Paragraphs([2].GetRange (), InsertLocation.After,
FormattingCopyStrategy.Copy) ;

doc.Save ("Copy WithinDoc WithFormatting.docx");

//Copy table after the fourth paragraph without formatting
doc.Body.Tables[0] .GetRange () .CopyTo (doc.Body.Paragraphs[3].GetRange (), InsertLocation.After,
FormattingCopyStrategy.Clear) ;

doc.Save ("Copy WithinDoc WithoutFormatting.docx");

Back to Top
To copy content between documents with or without formatting:

1. Load a document using the Load method of GcWordDocument class.

2. Create a new document in which you want to copy the content and add a new paragraph using the Add method of ParagraphCollection
class.

3. Copy the table from first document, in the second document, using the CopyTo method of the RangeBase class. To keep the formatting of
table, the Copy value of FormattingCopyStrategy enumeration has been passed as a parameter to the CopyTo method.

4. Copy the paragraph from first document, at the start of second document. To clear the formatting of paragraph, the Clear value of
FormattingCopyStrategy enumeration has been passed as a parameter to this method.

C#

var docl = new GcWordDocument () ;
docl.Load ("Test.docx") ;

var doc2 = new GcWordDocument () ;
doc2.Body.Sections[0] .GetRange () .Paragraphs.Add ("Using DsWord, content can be copied with or without
formatting in single document or between documents");

//Copy table from first document after the first paragraph of second document with formatting
docl.Body.Tables[0] .GetRange () .CopyTo (doc2.Body.Paragraphs.First.GetRange (), InsertLocation.After,
FormattingCopyStrategy.Copy) ;

doc2.Save ("Copy BetweenDocs WithFormatting.docx");

//Copy second paragraph of first document at the start of the second document without formatting
docl.Body.Paragraphs[1l].GetRange () .CopyTo (doc2.Body, InsertLocation.Start,
FormattingCopyStrategy.Clear) ;

doc2.Save ("Copy BetweenDocs WithoutFormatting.docx");

Back to Top

To copy content between documents and keep source document's formatting:

1. Define a style in the target document by using various properties like Font and ParagraphFormat. Add a paragraph using this style by using

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 46

Styles method of StyleCollection type.

2. Similarly, define a style with the same name in the source document but with different set of properties. Add a paragraph using this style by
using Styles method of StyleCollection type.

3. Copy the paragraph from source document to target document using KeepSource value of FormattingCopyStrategy enumeration.

C#

// The name of the style used in both documents
const string styleName = "X-style";

// The target document
var doc = new GcWordDocument () ;

// Add a paragraph style to the target document

var xStyleTgt = doc.Styles.Add(styleName, StyleType.Paragraph);

xStyleTgt.Font.Color.RGB = Color.Blue;

xStyleTgt.Font.Bold = true;

xStyleTgt.ParagraphFormat.Indentation.RightIndent += 72;

// Add a paragraph with that style

var textTgt = $"This paragraph in the target document " +
$"is associated with a custom paragraph style named \"{styleName}\". " +
$"That style specifies the font to be blue and bold, and the whole paragraph " +
$"is indented by 1\" on the right.";

doc.Body.Paragraphs.Add (textTgt, doc.Styles[styleName]) ;

// The source document, will copy from it to the target document keeping formatting
var docSrc = new GcWordDocument () ;
// Add a style with the same name to the source
var xStyleSrc = docSrc.Styles.Add(styleName, StyleType.Paragraph);
xStyleSrc.Font.Color.RGB = Color.Red;
xStyleSrc.Font.Italic = true;
xStyleSrc.ParagraphFormat.Alignment = ParagraphAlignment.Right;
xStyleSrc.ParagraphFormat.Indentation.LeftIndent += 72;
// Add a paragraph with the style, this paragraph will be copied to target
var textSrc = "This paragraph is copied from the source to the target DOCX. " +
$"In the source DOCX, this paragraph was associated with a custom style also named \"
{styleName}\". " +
$"That style specifies the font to be red and italic, the whole paragraph is right-aligned " +
$"and indented 1\" from the left. " +
$"Due to a conflict with the same-named but different style in the target document " +
$"its name is changed to \"{styleName}l\".";
var paraSrc = docSrc.Body.Paragraphs.Add(textSrc, docSrc.Styles[styleName]) ;

// Copy paragraph from source to target using FormattingCopyStrategy.KeepSource
paraSrc.GetRange () .CopyTo (doc.Body, InsertLocation.End, FormattingCopyStrategy.KeepSource) ;

//Save target document
doc.Save ("keepsourceformatting.docx") ;

Back to Top

The output of above code will look like below in the target Word document:

This paragraph in the target document is associated with a custom paragraph style named "X-style".
That style specifies the font to be blue and bold, and the whole paragraph is indented by 1" on the
right.

This paragraph is copied from the source to the target DOCX. In the source DOCX, this paragraph was
associated with o custom style also named "X-style”. That style specifies the font to be red and italic, the
whole paragroph is right-aligned and indented 1" from the left. Due to a conflict with the same-nomed
but different style in the target document its nome is changed to "X-stylel1".

Move Document Content

To move content within a document with or without formatting:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 47

1. Load a document using the Load method of GeWordDocument class.

2. Move the second paragraph after the third paragraph using the MoveTo method of the RangeBase class. To keep the formatting of
paragraph, the Copy value of FormattingCopyStrategy enumeration has been passed as a parameter to the MoveTo method.

3. Move table before the first paragraph in the document. To clear the formatting of content control, the Clear value of
FormattingCopyStrategy enumeration has been passed as a parameter to this method.

C#

var doc = new GcWordDocument () ;
doc.Load ("Test.docx") ;

//Move second paragraph after the third paragraph with formatting
doc.Body.Paragraphs[1l].GetRange () .MoveTo (doc.Body.Paragraphs[2].GetRange (), InsertLocation.After,
FormattingCopyStrategy.Copy) ;

doc.Save ("Move WithinDoc WithFormatting.docx");

//Move table before the first paragraph without formatting

doc.Body.Tables[0] .GetRange () .MoveTo (doc.Body.Paragraphs.First.GetRange (), InsertLocation.Before,
FormattingCopyStrategy.Clear);

doc.Save ("Move BetweenDocs WithoutFormatting.docx");

Back to Top
To move content between documents with or without formatting:

1. Load a document using the Load method of GcWordDocument class.

2. Create a new document in which you want to move the content and add a new paragraph using the Add method of ParagraphCollection
class.

3. Move the table from first document, in the second document, using the MoveTo method of the RangeBase class. To keep the formatting of
table, the Copy value of FormattingCopyStrategy enumeration has been passed as a parameter to the MoveTo method.

4. Move an image from first document, at the end of the last paragraph's run of the second document. To clear the formatting of image, the
Clear value of FormattingCopyStrategy enumeration has been passed as a parameter to this method.

C#

var docl = new GcWordDocument () ;
docl.Load ("Test.docx") ;

var doc2 = new GcWordDocument () ;
doc2.Body.Paragraphs.Add ("Using DsWord, content can be moved with or without formatting in single

document or between documents");

//Move table from first document before the first paragraph of second document with formatting
docl.Body.Tables[0] .GetRange () .MoveTo (doc2.Body.Paragraphs.First.GetRange (), InsertLocation.Before,
FormattingCopyStrategy.Copy) ;

doc2.Save ("Move BetweenDocs WithFormatting.docx");

//Move image from first document at the end of the last paragraph's run of the second document without
formatting
docl.Body.Pictures.First.GetRange () .MoveTo (doc2.Body.Paragraphs.Last.GetRange () .Runs.First.GetRange (),
InsertLocation.End, FormattingCopyStrategy.Clear);

doc2.Save ("Move BetweenDocs WithoutFormatting.docx");

Back to Top

For more information on how to copy or move document content using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/basics/modification/range-copy-move/code-cs

Document Solutions for Word 48

Split or Merge Documents

DsWord allows you to easily split or merge documents by providing the SplitDocument and MergeDocuments
methods in GeWordDocument class. While performing the split or merge operations, the formatting settings of the
document can also be copied or cleared using the Copy or Clear value of FormattingCopyStrategy enumeration.

The MergeDocuments method appends the document content one after the another to create a new merged
document and the SplitDocument method copies the content from specific ranges to create new documents.

Split Documents

To split a document:

1. Load a document using the Load method of GeWordDocument class.

2. Define an IEnumerable collection of document ranges using the Range class. The count of these ranges will
determine the number of split documents to be created.

3. Split the document using the SplitDocument method of GcWordDocument class. To copy the formatting
settings, use the Copy value of FormattingCopyStrategy enumeration.

4. Save the split documents as new documents using the Save method of GeWordDocument class.

C#

//Load the document
GcWordDocument doc = new GcWordDocument () ;
doc.Load ("SampleDoc.docx") ;

//Define an IEnumerable collection of document ranges which are intended to be
copied to the new document

Range[] splitRanges = new Range[] { doc.Body.Sections[0].GetRange(),
doc.Body.Sections[1l].GetRange () };

//Split the document into multiple documents

IEnumerable<GcWordDocument> docs

doc.SplitDocument (FormattingCopyStrategy.Copy, splitRanges);

//Save the individual documents
List<GcWordDocument> splitDocs = docs.ToList<GcWordDocument> () ;
splitDocs[0].Save ("Docl.docx") ;
splitDocs[1l].Save ("Doc2.docx") ;

Back to Top

Merge Documents

To merge two documents:

1. Load the documents which you want to merge using the Load method of GeWordDocument class.

2. Define an IEnumerable collection of the documents you want to merge together.

3. Merge the documents using the MergeDocuments method of GcWordDocument class. To copy the
formatting settings, use the Copy value of FormattingCopyStrategy enumeration.

4. Save the merged document as a new document using the Save method of GeWordDocument class.

C#

//Load the documents

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

GcWordDocument docl = new GcWordDocument () ;
docl.Load ("Documentl.docx") ;

GcWordDocument doc2 = new GcWordDocument () ;
doc2.Load ("Document2.docx") ;

//Define an IEnumerable collection of documents to be merged
GcWordDocument [] docs = new GcWordDocument[] { docl, doc2 };

//Merge the documents
GcWordDocument mergedDoc =

GcWordDocument .MergeDocuments (FormattingCopyStrategy.Copy, docs);

//Save the merged document
mergedDoc. Save ("MergedDoc.docx") ;

Back to Top

For more information on how to split or merge documents content using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/basics/modification/split-docs/code-cs

Document Solutions for Word 50

Page Settings

DsWord stores all the page setup attributes, such as page borders, size, margins, etc., as properties in the PageSetup class. These properties
control the structure and layout of pages in a word document. DsWord also allows you to insert a page break which is especially required in
case of a long document using Type property of the Break class. The Type property takes Page as a value from BreakType enumeration for

specifying a page break. Moreover, DsWord lets you specify how a document is printed using Type property of the MultiPagePrinting class.

The Type property takes the value from MultiPagePrintingType enumeration, so that the printed document can be bound as a booklet.

Set Page Properties

To set the page properties:

1.

Access the page setup properties using PageSetup property of the Section class.

2. Set the page size properties. For example, set the orientation of the page using the Orientation property and paper size using

the PaperSize property.

3. Set the page borders of the section using the Borders property and apply border to the pages using the Border class properties.

C#
GcWordDocument doc = new GcWordDocument () ;
doc.Load ("SampleDoc.docx") ;
Section first = doc.Body.Sections.First;
first.PageSetup.Size.Orientation = PageOrientation.Landscape;
first.PageSetup.Size.PaperSize = PaperSize.PaperLetter;
first.PageSetup.Borders.AppliesTo = PageBorderAppliesTo.AllPages;
first.PageSetup.Borders.Left.LineStyle = LineStyle.BabyPacifier;
first.PageSetup.Borders.Right.LineStyle = LineStyle.BabyPacifier;
first.PageSetup.Borders.AlwaysInFront = true;
doc.Save ("SetPageProperties.docx") ;

Back to Top

Set Page Number

To set the page numbering:

1.
2.

w

Access the page setup properties using PageSetup property of the Section class.

Set the page numbering properties. For example, set the starting page number using the StartingNumber property and the page
number format using NumberStyle property of the PageNumbering class.

This displays the page numbering when you click on the scroll handle, which is the default behavior. However, if you want to display
the page number at the bottom of the page, you can insert a footer in the page and use a simple field in it.

. Append a footer using the Footers property and add a paragraph to it using the Add method.
. Add a simple field in the paragraph using Add method of the SimpleFieldCollection class.

C#

doc.Load ("SampleDoc.docx") ;
Section first = doc.Body.Sections.First;

//Set page numbering

first.PageSetup.PageNumbering.StartingNumber = 3;

first.PageSetup.PageNumbering.NumberStyle = NumberStyle.NumberInDash;
first.Footers|[HeaderFooterType.Primary] .Body.Paragraphs.Add("") ;
first.Footers[HeaderFooterType.Primary] .Body.Paragraphs.First.GetRange () .SimpleFields.Add ("PAGE") ;

//Save the document
doc.Save ("PageNumbering.docx") ;

Back to Top

Insert Page Break

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 51

To insert page break in a Word document:

1. Access a paragraph in a section. For example, access first paragraph of the first section.

2. Add a page break on the desired location in the paragraph using AddBreak method of the TextCollection class. For example, add the
page break after first run of the first paragraph.

3. Set the break type to Page using the BreakType enum.

C#

doc.Load ("SampleDoc.docx") ;

//Access the first paragraph of the first section
Section first = doc.Body.Sections.First;
Paragraph pl = first.GetRange () .Paragraphs.First;

//Insert page break
Break brl;
brl = pl.GetRange () .Runs.First.GetRange () .Texts.AddBreak (BreakType.Page) ;

//Save the document
doc.Save ("SampleDoc PageBreak.docx");

Back to Top

Remove Page Break

To remove page break:

1. Get a list of all the breaks of type Page from the document.
2. Remove a page break using the Delete method. For example, remove the first page break.

C#

//Load the document
doc.Load ("SampleDoc PageBreak.docx");

//Get a list of all the breaks of type "Page" that exist in the document
new List<Break>();
foreach (var text in doc.Body.Texts)

{

var breaks

Break x = text as Break;
if (x !'= null && x.Type == BreakType.Page)
breaks.Add (x) ;

//Remove the first page break
breaks[0] .Delete () ;

//Save the document
doc.Save ("SampleDoc NoPageBreak.docx") ;

Back to Top

Multipage Printing
To print a multiple page document:
1. Access the options to print the multiple page document using MultiPagePrinting property of the PageSetup class.
2. Set the type for document printing using Type property of the MultiPagePrinting class.
C#
doc.Load ("SampleDoc.docx") ;
//Two out of the three sheets in the document will be printed on one page

doc.Body.Sections.First.PageSetup.MultiPagePrinting.Type =
MultiPagePrintingType.TwoPagesPerSheet;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 52

doc.Save ("MultiPagePrinting.docx") ;

Back to Top

For more information on how to work with pages and page breaks using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/docs/online/pagesetting.html

Document Solutions for Word 53

Styles

Document styles are the pre-defined set of formatting instructions which can be re-used any number of times in a
document. For instance, a document style once defined for a list can be used to represent all other similar lists in the
document.

DsWord provides you the ability to style a Word document using built-in styles. It offers different style types

through BuiltinStyleld enumeration which can be applied to the corresponding content type. In addition to the built-
in styles, DsWord also allows you to define styles on your own using the Style class. You can add a defined style to the
style collection using Add method of the StyleCollection class and the style collection can be accessed using Styles
property of the GcWordDocument class.

Create Document Styles

To create new style for a Word document:

1. Define a new style using the Style class and add it to the document using the Add method.

2. Access the content object on which a style has to be applied. For example, access first text run from the first
paragraph.

3. Apply the defined style on the text run using Style property of the Run class.

C#

doc.Load ("SampleDoc.docx") ;

//Access the first paragraph
Paragraph p = doc.Body.Sections.First.GetRange () .Paragraphs.First;

//Access the text in the first run
Run run = p.GetRange () .Runs.First;

// Create a new char style "stylel" for the first half

Style stylel = doc.Styles.Add("Stylel", StyleType.Character);
stylel.Font.Name = "Times New Roman";

stylel.Font.Size = 16;

stylel.Font.Bold = true;

stylel.Font.Italic = true;

stylel.Font.Color.RGB = Color.Blue;

stylel.Font.Underline = Underline.Thick;

//Bpply style to the text run
run.Style = stylel;

//Save the document
doc.Save ("StyleAdded.docx") ;

Back to Top

Modify Document Styles

To modify document style:

1. Access the content object on which a style is applied. For example, access first text run of the first paragraph.
2. Modify the applied styles on the text run. For example, font name and color.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 54

3. Apply the modified style on the text run using Style property of the Run class.
Ci#

doc.Load ("StyleAdded.docx") ;

//Access the first paragraph
Paragraph paral = doc.Body.Sections.First.GetRange () .Paragraphs.First;

//Access the first run
Run run = paral.GetRange () .Runs.First;

//Modify the existing style's font name and color
Style sl = run.Style;

sl.Font.Color.RGB = Color.Brown;

sl.Font.Name = "Arial";

//Bpply style to the run
run.Style = sl;

//Save the document
doc.Save ("ModifyStyles.docx") ;

Back to Top

Delete Document Styles

To delete the style applied on a Word document:

1. Access the content object on which a style is applied. For example, access first text run of the first paragraph.
2. Delete the style applied on the accessed range using Delete method of the Style class.

C#

doc.Load ("StyleAdded.docx") ;

//Access the first paragraph
Paragraph p = doc.Body.Sections.First.GetRange () .Paragraphs.First;

//Access the text in the first run
Run run = p.GetRange () .Runs.First;

//Delete the style applied on the first half
run.Style.Delete();

//Save the document
doc.Save ("StyleDeleted.docx") ;

Back to Top

Add Linked Styles

Linked styles behave as either a character style or a paragraph style, depending on what you select. So, if you click on
a paragraph or select a paragraph and then apply a linked style, the style is applied as a paragraph style. However, if
you select a word or phrase in the paragraph and then apply a linked style, the style is applied as a character style,

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 55

with no effect on the paragraph as a whole. Linked styles also allow a user to update the style properties of all the
paragraphs and words or phrases with the same type of style at once.

DsWord supports Linked Styles by using AddLinkedStyle method of StyleCollection class, and also
provides HideLinkedCharacterStyles property in GcWordDocument class to hide the character style part of the linked
style in our API in order to achieve the same behavior as MS Word.

DsWord also allows a user to:

Use a linked style in Add or Insert method of RunCollection for style argument
Apply a linked style to the Style property of Run class

Apply a linked style to the Style property of ContentControl class

Apply a linked style to the Style property of FormattedMark class

Apply a linked style to the Style property of FindFormatting class.

Refer to the following example code to add paragraph and character linked style:

C#

// Initialize GcWordDocument.

GcWordDocument doc = new GcWordDocument () ;

// Change the default value of HideLinkedCharacterStyles.
doc.HideLinkedCharacterStyles = false;

// Create a linked style.
Style linkedStyle = doc.Styles.AddLinkedStyle ("Linked Style",
doc.Styles[BuiltInStyleId.Headingl]);

// Change linked style formatting.
linkedStyle.Font.Bold = true;

// Apply linked style to a paragraph.
doc.Body.Paragraphs.Add ("This paragraph is formatted with a paragraph linked style.",
linkedStyle) ;

// Apply linked style to a run.

Paragraph paragraph = doc.Body.Paragraphs.Add("This paragraph ",
doc.Styles[BuiltInStyleId.Normall) ;

Run run = paragraph.GetRange () .Runs.Add("is formatted with a character linked
style.", linkedStyle);

// Change HideLinkedCharacterStyles property value.
doc.HideLinkedCharacterStyles = true;

// Save the Word document.
doc.Save ("LinkedStyles.docx", DocumentType.Document) ;

The output of the above-mentioned example code is shown in the image below:

This paragraph is formatted with a paragraph linked style.
This paragraph i$ formatted with a character linked style.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 56

Refer to the following example code to add linked style for ContentControl, FormattedMark, and FindFormatting:

C#

// Initialize GcWordDocument.
GcWordDocument doc = new GcWordDocument () ;

// Create a linked style
Style style = doc.Styles.AddLinkedStyle ("linked");

// Add a content control.
ContentControl cc = doc.Body.ContentControls.Add (ContentControlType.RichText, false);

// Set the linked style to content control.
cc.Style = style;

// Add a paragraph.
Paragraph pl = cc.Content.GetRange () .Paragraphs.Add("paragraph text");

// Set the linked style to its mark.
pl.Mark.Style = style;

// Add a run and set the linked style to it.
Run run = pl.GetRange () .Runs.Add(style);
Text text = run.GetRange () .Texts.Add("text to find");

// Add another paragraph and set the linked style to it.
Paragraph p2 = cc.Content.GetRange () .Paragraphs.Add ("paragraph to find", style);

// Create find options and set the linked style to it.
FindOptions fo = new FindOptions (doc);
fo.FormattingOptions.Style = style;

var res = doc.Body.Find(string.Empty, fo).ToArray():;
GrapeCity.Documents.Word.Range found = res[0].Range;

// Save the Word document.
doc.Save ("LinkedStyles.docx");

Back to Top

For more information on how to apply different document styles using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/basics/styles/list-built-in-styles/code-cs

Document Solutions for Word 57

Text Effect

DsWord lets you set following effects to your text:

o Fill and Line Effects
e Shadow Effects

Fill and Line Effect

DsWord lets you apply effects to your fonts by using the Font.Fill and Font.Line properties. You can set both Fill and Line properties to NoFill, Solid or
Gradient type only through Type property. The Type property accepts values from FillType enumeration.

Font Fill and Line styles

Font.Fill and Font.Color properties are interdependent. Following table demonstrates their dependency on each other:

Font.Fill Font.Color

Not specified Font.Fill takes the value from Font.Color as Solid type.

Any of Font.Fill properties are specified. Font.Color uses Font.Fill.SolidFill properties.

Font.Fill type is specified as Gradient. Font.Fill and Font.Color are independent of each other. DsWord uses Font.Fill to render the font.

In addition, you can also set the Font.Line property to give your fonts an outline effect. Font.Line and Font.Color are independent of each other.

C#

// Specify gradient fill for the font:

var fill = style.Font.Fill;

fill.Type = FillType.Gradient;

var gradient = fill.GradientFill;

gradient.Angle = 64;

gradient.Stops[0].Color.RGB = Color.LightSeaGreen;
gradient.Stops[l].Color.RGB = Color.Orange;

// Specify the outline for the font:
var line = style.Font.Line;
line.Width = 1;

fill = line.Fill;

fill.Type = FillType.Solid;
£i11.501idFill.RGB = Color.Blue;

// Add sample text with the new style:
doc.Body.Paragraphs.Add ("Font Fill and Line styles.", style);

Shadow Effect

The shadow effect adds additional depth to your text. DsWord allows you to apply shadow effects to text using built-in shadow effects and using custom
shadow effects. To apply built-in shadow effect to a text, you can use ApplyBuiltinShadow method of the TextEffects class that accepts BuiltinShadowld
enum as its parameter. However, for applying custom shadow effect to a text, you can use OuterShadow type of the TextEffects class and set its
properties.

The code below shows how to apply built-in shadow to text using the ApplyBuiltinShadow method:

C#

// apply top right offset shadow effect to the text
style.Font.Effects.ApplyBuiltInShadow (BuiltInShadowId.OffsetTopRight) ;
doc.Body.Paragraphs.Add ("Font Shadow", style);

The code below shows how to apply custom shadow to a text using the OuterShadow type:

C#

// apply top right offset shadow effect to the text
OuterShadow shadow = style.Font.Effects.Shadow;
shadow.Alignment = RectangleAlignment.BottomLeft;
shadow.Angle = 315f;

shadow.Blur = 4f;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 58

shadow.Distance = 3f;
shadow.ScaleX = 100f;
shadow.ScaleY = 100f;
shadow.SkewX = 0f;

shadow.SkewY = 0f;
shadow.Color.RGB = Color.Black;
shadow.Color.Transparency = 0.6f;

doc.Body.Paragraphs.Add ("Font Shadow", style);

Reflection Effect

DsWord allows you to apply reflection effects to text using built-in reflection effects and custom reflection effects. To apply built-in reflection effect to a
text, you can use ApplyBuiltinReflection method of the TextEffects class that accepts BuiltinReflectionld enum as its parameter. However, for applying
custom reflection effect to a text, you can use Reflection type of the TextEffects class and set its properties.

Font Reflectjon

The code below shows how to apply built-in reflection to text using the ApplyBuiltinReflection method:

C#

// apply top half touching reflection effect to the text
stylel.Font.Effects.ApplyBuiltInReflection(BuiltInReflectionId.HalfTouching);
doc.Body.Paragraphs.Add ("Font Reflection.", stylel);

The code below show how to apply custom reflection to text using the Reflection type:

C#

// Custom text reflection:
doc.Styles.Add ("styleO",
style0.Font.Size 48;

// apply top half touching reflection effect to the text

var stylelO = StyleType.Paragraph) ;

Reflection reflection = styleO.Font.Effects.Reflection;
reflection.Distance = 0f;

reflection.Angle = 90f;

reflection.Blur = 0.5f;

reflection.Alignment = RectangleAlignment.BottomLeft;
reflection.ScaleX = 100f;

reflection.ScaleY = -100f;

reflection.SkewX = 0f;

reflection.SkewY = 0f;

reflection.StartOpacity = 60f;

reflection.EndOpacity = 0.9f;
reflection.StartOpacityPosition = 0f;
reflection.EndOpacityPosition = 58f;
reflection.OpacityAngle = 90f;

doc.Body.Paragraphs.Add ("Font Reflection.", styleO);

To view the code in action, see Reflection Effect demo sample.

Glow Format

DsWord allows you to apply glow effects to text using built-in glow effects and custom glow effects. To apply built-in glow effect to a text, you can
use ApplyBuiltinGlow method of the TextEffects class that accepts BuiltinGlowld enum as its parameter. However, for applying custom glow effect to a
text, you can use Glow type of the TextEffects class and set its properties.

Font Glow

The code below shows how to apply built-in glow to a shape using the ApplyBuiltinGlow method:

C#

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/features/effects/reflection-effect/word-cs

Document Solutions for Word

// apply 5 point accent 5 glow effect to the text

style.Font.Effects.ApplyBuiltInGlow (BuiltInGlowId.Radius5Accent5b) ;

doc.Body.Paragraphs.Add ("Font Glow", style);

The code below shows how to apply custom glow effect to a shape:

C#

// apply 5 point accent 6 glow effect to the text
Glow glow = style.Font.Effects.Glow;

glow.Radius = 5f;

glow.Color.ThemeColor = ThemeColorId.Accenté6;
glow.Color.Transparency = 0.6f;
doc.Body.Paragraphs.Add ("Font Glow", style);

To view the code in action, see Glow Effect Demo sample.

3D Effect

59

The 3D effects refer to the effects applied in three spatial dimensions: width, height, and depth. The 3D effects give the text a unique and artistic look. For
applying 3D effects, DsWord provides the ThreeDFormat and ThreeDScene classes and the ApplyEffectsPreset method. The ApplyEffectsPreset method

allows a user to add preset 3D effects. However, the ThreeDFormat and ThreeDScene classes allow a user to add custom 3D effects. DsWord also provides
an IFixedFormattingBag interface for all text effects and allows a user to understand and control whether the text has a direct effect or is inherited from its

parent.

Preset 3D Effect

/““\) _ |—'_(_J_|(_J|r’_‘h _| —~
SU CITECTS

Refer to the following example code to add a preset 3D effect to the text:

C#

// Initialize GcWordDocument.

GcWordDocument doc = new GcWordDocument () ;

// Add a paragraph to the document.
Paragraph paragraph = doc.Body.Paragraphs.Add() ;
Run run = paragraph.GetRange () .Runs.Add("3D Effects");

// Set font size.
run.Font.Size = 72f;

// BApply preset text 3D effect.
run.Font.ApplyEffectsPreset (FontEffectsPreset.Preset));

// Save the Word document.
doc.Save ("Preset3DEffects.docx");

Refer to the following example code to add a custom 3D effect to the text:

C#

// Initialize GcWordDocument.

GcWordDocument doc = new GcWordDocument () ;

// Add a paragraph to the document.

Paragraph paragraph = doc.Body.Paragraphs.Add();

Run run = paragraph.GetRange () .Runs.Add ("3D Effects");
// Set text style.

GrapeCity.Documents.Word.Font font = run.Font;
font.Size = 72f;

font.Bold = true;

© 2024 MESCIUS inc. All rights reserved.

Custom 3D Effect

https://developer.mescius.com/documents-api-word/demos/features/effects/glow-effect/word-cs

Document Solutions for Word 60

font.Color.ThemeColor = ThemeColorId.Accent3;
font.Line.Fill.Type = FillType.NoFill;

// RApply 3D effect.

ThreeDFormat threeD = font.Effects.ThreeDFormat;
threeD.Material = MaterialType.Matte;
threeD.Depth.Width = 4.5f;

threeD.TopBevel.Type = BevelType.Angle;
threeD.TopBevel.Width = 5f;
threeD.TopBevel.Height = 1f;

// Save the Word document.
doc.Save ("3DEffects.docx") ;

Limitation

DsWord does not support export of font fill and line, font shadow, reflection, and glow effects to PDF and images.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 61

Export

Exporting a Word document to PDF and images is a very common use case and is generally required for various
business purposes. Some of the advantages are security, cross-platform compatibility, availability of free readers,
reduced file size etc.

DsWord allows you to export Word documents to PDF format with the help of DS.Documents.Word.Layout
(DsWordLayout) package. Hence, it is mandatory to install DS.Documents.Word.Layout package while using the
export functionality in DsWord.

Z] Note: The old DS.Documents.Layout package is replaced by the new DS.Documents.Word.Layout package
which has been refactored to improve the functionality.

The GcWordLayout class in GcWordLayout package separates the layout of source Word document from the
exported PDF formats. You can also use the WordLayoutSettings class to perform various customizations of the set
of pages being exported.

Export to PDF

The SaveAsPdf method of GcWordLayout class can be used to export Word documents to PDF. You can also set
various PDF options like compression level, back color, metadata, PDF version by using properties of
PdfOutputSettings class.

To export a Word document to PDF:

1. Load a Word document in GcWordLayout instance.
2. Save the Word document as PDF by using SaveAsPdf method of GcWordLayout class.
3. Use PdfOutputSettings class to specify the CompressionLevel as Fastest.

C#

var wordDoc = new GcWordDocument () ;

wordDoc.Load ("SimpleText.docx") ;

using (var layout = new GcWordLayout (wordDoc))

{

// save the whole document as PDF

layout.SaveAsPdf ("SimpleText.pdf", null, new PdfOutputSettings() {
CompressionLevel = CompressionLevel.Fastest });

}

Export to Image

You can save Word Documents to TIFF, PNG and JPEG image formats by using SaveAsTiff, SaveAsPng
and SaveAsJpeg methods respectively. The properties of ImageOutputSettings class can be used to choose from
various options like zoom, back color and resolution while saving to image files.

To export a Word document to TIFF image format:
1. Load a Word document in GcWordLayout instance.

2. Save the Word document as TIFF image by using SaveAsTiff method of GcWordLayout class.
3. Use ImageOutputSettings class to specify the Compression as Deflate.

C#

var wordDoc = new GcWordDocument () ;
wordDoc.Load ("JsFrameworkExcerpt.docx") ;

© 2024 MESCIUS inc. All rights reserved.

https://www.nuget.org/packages/GrapeCity.Documents.Word.Layout/
https://www.nuget.org/packages/GrapeCity.Documents.Word.Layout/

Document Solutions for Word

using (var layout

{

new GcWordLayout (wordDoc))

// save a few pages of the Word document as TIFF

layout.SaveAsTiff ("JsFrameworkExcerpt.tiff",

new ImageOutputSettings() { Zoom = 2f }, new TiffFrameSettings ()

TiffCompression.Deflate });

}

To export a single page of Word document to JPEG image format:

> w

BuiltInStyles by using BuiltinStyleld enumeration.
Load the document in GeWordLayout instance.

new OutputRange ("2, 6-7"),

. Create a new Word document by instantiating the GeWordDocument class.
Add content to the document by using Add method of ParagraphCollection class and specifying various

62

{ Compression =

Save the first page of Word document as JPEG image by using SaveAsJpeg method of GcWordLayout class.
Use ImageOutputSettings class to specify the Zoom and BackColor properties.

C#

var doc = new GcWordDocument () ;
var sec = doc.Body.Sections.First;
var pars = sec.GetRange () .Paragraphs;

// Title

pars.Add ("Some Common Built-in Styles (Title)",

doc.Styles[BuiltInStyleId.Title]);

// Subtitle

pars.Add ("Demonstration of some of the built-in

doc.Styles[BuiltInStyleId.Subtitle]);

// Headings 1-4

styles. (Subtitle)",

var headingl = pars.Add("Heading 1", doc.Styles[BuiltInStyleId.
var heading2 = pars.Add("Heading 2", doc.Styles[BuiltInStyleId.
var heading3 = pars.Add("Heading 3", doc.Styles[BuiltInStyleIld.
var heading4 = pars.Add("Heading 4", doc.Styles[BuiltInStyleld.
// Character styles

var p = pars.Add("In this paragraph we demonstrate some of the

character styles. ");

var runs = p.GetRange () .Runs;

runs.Add ("This run uses the 'Strong' style. "
doc.Styles[BuiltInStyleId.Strong]) ;
runs.Add ("A run of normal text. ");

runs.Add ("This run uses 'Emphasis' style. ",
doc.Styles[BuiltInStyleId.Emphasis]);
runs.Add ("A run of normal text. ");

runs.Add ("This run uses 'Intense Emphasis' style.

doc.Styles[BuiltInStyleId.IntenseEmphasis]);
runs.Add ("A run of normal text. ");

4

runs.Add ("This run uses 'Subtle Emphasis' style.

doc.Styles[BuiltInStylelId.SubtleEmphasis]);

© 2024 MESCIUS inc. All rights reserved.

Headingl
Heading2
Heading3
Heading4

built-in

1)
1)
1)
1)

’

’
’

’

Document Solutions for Word 63

pars.Add("The End.");

using (var layout = new GcWordLayout (doc))

{

layout.Pages[0].SaveAsJpeqg ("example.jpg", new ImageOutputSettings() { Zoom = 2f,
BackColor = Color.Yellow });

}

For more information on how to convert a Word document into PDF and image formats using DsWord, see DsWord
sample browser.

Export to SVG

In addition to above mentioned common image formats, DsWord also lets you save the Word document pages as
SVG or its compressed format SVGZ. You can use SaveAsSvg and ToSvgz methods of the
GrapeCity.Documents.Word.Layout.Page class to export an instance of word page to SVG file or stream(.svg) or a
byte array(.svgz).

C#

var wordDoc = new GcWordDocument () ;
wordDoc.Load ("StatementOfWork.docx") ;
using (var la = new GcWordLayout (wordDoc))
{

var page = la.Pages[0];

// Render a Word page to the .svg file
page.SaveAsSvg ("StatementOfWork.svg", new ImageOutputSettings() { Zoom = 1f },
new XmlWriterSettings() { Indent = true });

// Render a Word page to the byte array with compressed data in SVGZ format
var svgData = page.ToSvgz () ;
File.WriteAllBytes ("StatementOfWork.svgz", svgData);

Limitations

DsWord has a few limitations while exporting to PDF and image file formats. Some of them, in particular, are:

e While exporting to SVG, text is always rendered as graphics using paths. Hence, resulting .svg files for text
pages are large and it is not possible to select or copy text on the SVG images opened in the browsers.
® Objects that are not supported by the DsWord OM are not exported.
Footnotes are not exported.
® Export of text boxes is supported, but linked text boxes, text outlines, gradients, font fill and line effect, and the
"Do not rotate text" option are not supported.
® When exporting shapes, custom shapes, ink shapes, sketched lines, gradient lines, and compound lines are not
supported.
® Only stored values in fields are exported (i.e. no recalculation), with the following exceptions:
o Page numbering is supported.
o Partial hyperlink field is supported.
® Comments can optionally be exported, but complete formatting is not retained.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/
https://developer.mescius.com/documents-api-word/demos/

Document Solutions for Word 64

Fields

Fields in word document are used as placeholders to display the dynamic information such as date, page number, table of contents etc. These
fields are defined using a combination of a FieldCode and FieldResult. The FieldCode represents a set of instructions which are evaluated to
generate the dynamic content. When the document is rendered, the field codes implicitly execute the set of instruction and inserts the text,
graphics, etc. in the document. The text or element that is inserted is referred to as FieldResult.

MS Word has a defined set of FieldCodes which are supported in DsWord. All these FieldCodes can be added to the word document either as a
SimpleField or as a ComplexField depending on whether the FieldResult is rendered as a single run or multiple runs.

For example, the "DATE" field code inserts the current date in the document, which is a single run of text. When using this FieldCode in a
document, the inserted date has the same formatting such as font, font size etc. In such scenario, the DATE field should be implemented as a
SimpleField as the FieldResult is to be rendered as a single run. But, in case you need to render each part of the date with different formatting,
three runs would be required to render a single date. Hence, in this case, the DATE FieldCode should be implemented as a ComplexField.

DsWord supports two types of field elements, simple field element and complex field element, to hold such dynamic information. These simple
and complex field elements are represented by the SimpleField and ComplexField class respectively.

" CECDE AddField - Microsoft Word - m} x
3
—/ Home Insert Page Layout References Mailings Review View L2
oy 5 O EE T E =l X 4 Find ~
=[RS catied @ad N A &) 22 SR R | sebcenc | Asebcd AaBbC % % peolace
| -ae
Paste . v ao|[82 - A~ b=y~ FH - 7 " . Change
: 7 B I U -ahe %, X Aa A EEABR |2 EH Normai No Spad... Heading1 = Stylenr || [Select
Clipboard = Font L] Paragraph i Styles f Editing
e e e P, e e s s 5
F
~
DATE field with default formatting: 28-Aug-18
. TIME field with default formatting: 11:16 AM
Page:1of1 | Words:13 | 3 English (United States) [EEEEIET 0

Add Simple Field

To add a simple field in a document, you can use Add method of the SimpleFieldCollection class. The following sample code adds two Fields i.e
DATE and TIME to the Document using the SimpleField class.

C#

Section section = doc.Body.Sections.First;

// Add the paragraph:

section.GetRange () .Paragraphs.Add ("Simple Field Example");

var p0 = section.GetRange () .Paragraphs.Add ("DATE field with default formatting: ");

//Add Date Field
p0.GetRange () .SimpleFields.Add ("DATE \\@ \"d-MMM-yy\"");

//Add a Run in the paragraph
p0.GetRange () .Runs.Add ("\rTIME field with default formatting: ");

//Add Time Field
pO0.GetRange () .SimpleFields.Add ("TIME") ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 65

//Save the document
doc.Save ("AddSimpleField.docx") ;

Back to Top

Modify Simple Field
To modify a simple field:

1. Access the field collection using SimpleFields property of the RangeBase class and get a reference to a specific field. For example, the first
field of the collection.
2. Modify the field code using Code property of the SimpleField class.

C#

doc.Load ("AddSimpleField.docx") ;

//Modify the simple field
doc.Body.Sections.First.GetRange () .Paragraphs([2].GetRange () .SimpleFields.First.Code =
"DATE \\@ \"dd-MM-yy\"";

//Save the document
doc.Save ("ModifySimpleField.docx") ;

Back to Top

Delete Simple Field

To delete a simple field, access a simple field from the field collection using SimpleFields property of the RangeBase class and delete it using the
Delete method.

C#

doc.Load ("AddSimpleField.docx") ;

//Delete a simple field
doc.Body.Sections.First.GetRange () .SimpleFields.First.Delete();

//Save the document

doc.Save ("DeleteSimpleField.docx") ;

Back to Top

Add Complex Field

To add a complex field in a document, you can use Add method of the ComplexFieldCollection class.

The following sample code creates a ComplexField using IF and DATE fields to render a sentence in the document to notify the users whether
today is a new year day or not. Here, we are rendering “not” with bold formatting when DATE field result is not equal to “1-1". Follow the steps
below to add the complex field:

1. Add a complex field with instruction using Add method of the ComplexFieldCollection class. For example, add a complex field with "IF"
instruction.
2. Add a complex field to the complex field code range. For example, add a complex field with "Date" instruction to the complex field code
range.
. Access the field code from the field code collection using the CodeFields property of the ComplexField class.
4. Add a field code to the field code collection using Add method of the FieldCodeCollection class.

C#

w

Section section = doc.Body.Sections.First;
// create a paragraph and get its range
section.GetRange () .Paragraphs.Add ("Complex Field Example");

var pr = section.GetRange () .Paragraphs.Add () .GetRange () ;

// add a static phrase "It's "
pr.Runs.Add ("It's ");

// add a complex field with "IF" instruction

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 66

var £ = pr.ComplexFields.Add ("IF ");

// add a complex field with "DATE" instruction.
f.GetCodeRange () .ComplexFields.Add (" DATE \\@ \"M-d\" ");

//Add additional instruction to the "IF" field to compare the nested
//DATE field result with "1-1" and if it's not true - return "not" word.
// also make the "not" word (if visible) bold.

f.CodeFields.Add ("<> \"1-1\" \"not \"").ParentRun.Font.Bold = true;

// add a static phrase "new year's day!"
pr.Runs.Add ("new year's day!");

//Save the document
doc.Save ("AddComplexField.docx") ;

Back to Top

Modify Complex Field

To modify a complex field:

1. Access a complex field from the field collection using ComplexFields property of the RangeBase class.

2. Access a field code from the field code collection using the CodeFields property of the ComplexField class. For example, access the
second field of the collection.

3. Modify the field code value using the Value property.

C#

doc.Load ("AddComplexField.docx") ;

//Modify complex field
doc.Body.Sections.First.GetRange () .Paragraphs|[2].GetRange () .ComplexFields.First.CodeFields[1l].Value

nes \1112_31\11 \"HOt \nu;
doc.Body.Sections.First.GetRange () .Paragraphs([2].GetRange () .Runs[10] .GetRange () .Texts.First.Value =
"year's last day";

//Save the document
doc.Save ("ModifyComplexField.docx") ;

Back to Top

Delete Complex Field

To delete a complex field, access a complex field from the field collection using ComplexFields property of the RangeBase class and delete it
using Delete method of the ComplexField class.

C#

doc.Load ("AddComplexField.docx") ;

//Delete complex field
doc.Body.Sections.First.GetRange () .ComplexFields.First.Delete () ;

doc.Save ("DeleteComplexField.docx") ;

Back to Top

For more information on how to implement fields using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/basics/fields/date-and-time/code-cs

Document Solutions for Word 67

Footnote and Endnote

The purpose of using footnotes and endnotes in a document is to explain or provide additional information in a document
like a reference or credits to something or someone mentioned in a document. The difference between footnotes and

endnotes is that a footnote is displayed at the bottom of each page of a document and endnote appears at the end of a
section or a document.

DsWord allows you to add a footnote and endnote using Add method of the FootnoteCollection class

and EndnoteCollection class respectively. It lets you set the footnote and endnote position, numbering rule and number
style for a document or a section using the FootnoteOptions and EndnoteOptions class respectively. These classes can be
accessed using FootnoteOptions and EndnoteOptions properties of the Settings class respectively.

Dy W 9-0)¢ AddMotes - Microseft Ward — o w
ol
Home Imsert Page Layout Felerences Mailings Rewiew View i
= Y e [s i | %1 #
b 1A W] E SRR R T | sebcone| nasbcede AaBDCH %
7 B I U ~abe x, x' Aa- ®y - &" EE -|:§-| - L BHomsal | THe Spaci. Heading 1 | - E:;:Ingt Editing
ril I
Clipboard " Fort A Paragragh - Styles -
m] |-¢-.-‘.-.-E :-I. 3 |] .-I,- i l'... ;I...- .- .Ia\.- :-I..I,I ,_-..r:__. !.1. ,_._11. T o E
~
= o
Henowara!

- Thisis a sample text. 12

Type the text of your docurmnent here, The galleries for tables, headers & footers, lists, coverage pages,
and other document bullding blocks may include additional itemsthat are designed to coordinate with
the overalllook of this template.

Whanyou click an this text and type, these paragraphs will be replaced with your own content, You can
add text boxesto hold quotes or sidebar content by using the textbox gallery on the Insert tab. You can
alsoinsert pictures, charts, or diagrams into the document.

Tochange the overalllook of the document, you can change the theme elements used by selecting new
elements on the Page Setup tab. You can change the farmatting of the text in the document by changing
the Quick Styles set that is in use via the gallery on the Write tab. Both galleries offer commands to
allowyou to reset the look of your dotumeant to those stored in the template. Sectionl:

Onthe Insert tab, the galleries include items that are designed to coordinate with the overall look of
your document. You can use these galleries to insert tables, headers, footers, lists, cover pages, and
other documant bullding blocks. When you create pictures, charts, or diagrams, they also coordinate
with your current document look.

Page: 1ot & | Words: 2005 |

English [United States)

EEEY

Add Footnote and Endnote

To add a footnote and endnote:

1. Set the footnote and endnote options using the FootnoteOptions property and the EndnoteOptions property
respectively.

2. Access a content object to which a footnote and endnote needs to be added. For example, access a section of the
document.

Add a footnote using Add method of the FootnoteCollection class.

4. Add an endnote using Add method of the EndnoteCollection class.

C#

w

doc.Load ("HeaderFooter.docx") ;

//Set footnote options
doc.Settings.FootnoteOptions.Location = FootnotelLocation.BottomOfPage;

doc.Settings.FootnoteOptions.NumberingRule = FootnoteNumberingRule.Continuous;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 68

//Add footnote in first section
var section = doc.Body.Sections.First;
section.GetRange () .Paragraphs.First.GetRange () .Footnotes.Add ("This is a test

footnote.");

//Add footnote in second section

var section2 = doc.Body.Sections[1];

var secondRun =

section2.GetRange () .Paragraphs.First.GetRange () .Runs.Insert (InsertLocation.End) ;
secondRun.GetRange () .Texts.Add ("This is a reference text for a footnote.");

secondRun.GetRange () .Footnotes.Add ("Footnote for second section");

//Set endnote options
doc.Settings.EndnoteOptions.Location = EndnotelLocation.EndOfDocument;
doc.Settings.EndnoteOptions.NumberingRule = EndnoteNumberingRule.Continuous;

//Add endnote at the end of the document
section.GetRange () .Paragraphs[1l].GetRange () .Endnotes.Add ("This is a test endnote.");

//Save the document
doc.Save ("AddNotes.docx") ;

Back to Top

Modify Footnote and Endnote

To modify a footnote and endnote:

1.

Modify the footnote and endnote option using the FootnoteOptions property and the EndnoteOptions property
respectively. For example, modify the location.

. Access the footnote and endnote which needs to be modified. For example, access the first footnote and endnote

added to the document.

. Modify text of the footnote and endnote added to the document using Value property of the Text class.

C#

doc.Load ("AddNotes.docx") ;

//Modify footnote options
doc.Settings.FootnoteOptions.Location = FootnotelLocation.EndOfSection;

//Modify the footnote in first section
var section = doc.Body.Sections.First;
section.GetRange () .Paragraphs.First.GetRange () .Footnotes.First.Body.Texts.First.Value
= "This" +
" is a modified test footnote.";

//Modify endnote
doc.Settings.EndnoteOptions.Location = EndnotelLocation.EndOfSection;

//Modify the endnote in first section
section.GetRange () .Paragraphs[1l].GetRange () .Endnotes.First.Body.Texts.First.Value =
"This" +

" is a modified test endnote.";

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 69

//Save the document
doc.Save ("ModifyNotes.docx") ;

Back to Top

Delete Footnote and Endnote

To delete a footnote and endnote, access the footnote and endnote and delete them using Delete method of
the ContentObject class.
C#

doc.Load ("AddNotes.docx") ;

//Add footnote in first section.
var section2 = doc.Body.Sections[1];
section2.GetRange () .Paragraphs.First.GetRange () .Footnotes.First.Delete();

//Delete EndNote
var section = doc.Body.Sections.First;
section.GetRange () .Paragraphs[1l] .GetRange () .Endnotes.First.Delete () ;

//Save the document
doc.Save ("DeleteNotes.docx") ;

Back to Top

Set Numbering Style
To set numbering style of footnotes and endnotes:

1. Access the footnote and endnote options using the FootnoteOptions and EndnoteOptions property respectively.
2. Set the numbering style for the footnotes and endnotes using NumberStyle property of the FootnoteOptions and
EndnoteOptions class respectively, which takes value from the NumberStyle enumeration.

C#

doc.Load ("AddNotes.docx") ;

//Set footnote numbering style
doc.Settings.FootnoteOptions.NumberStyle = NumberStyle.DecimalEnclosedCircle;

//Set endnote numbering style
doc.Settings.EndnoteOptions.NumberStyle = NumberStyle.NumberInDash;

//Save the document

doc.Save ("SetNumbering.docx") ;

Back to Top

For more information on how to implement footnotes and endnotes in a Word document using DsWord, see DsWord
sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/basics/content/footnotes/code-cs
https://developer.mescius.com/documents-api-word/demos/basics/content/footnotes/code-cs

Document Solutions for Word 70

Embedded Fonts

Custom embedded fonts are significant part of document portability. With fonts embedded in it, user can always open
the word document with correct fonts even if the fonts do not exist on his system. This feature is especially useful
while rendering word documents which use rare fonts not available on a usual system.

DsWord provides extensive API to enable users to define custom fonts, embed them in the Word document, apply
them to the runs and so on.

Create and Embed Custom Fonts

DsWord allows you to create custom fonts using the FontInfo class which provides various properties to define
custom font. The collection of these Fontinfo objects for a document is represented by FontinfoCollection class.
Hence, to add a custom font to a document, you need to add it to FontinfoCollection using Add method. To embed a
font into a document, you can use Add method of the EmbeddedFontCollection class which represents the collection
of embedded fonts in a document.

C#

// Add the custom font to the document

// (in this case we simply duplicate "Times New Roman") :

var fontl = doc.Fonts.Add (myFontNamel) ;

// Use "Times New Roman" font settings:

fontl.CharSet = FontCharSet.Ansi;

fontl.Family = FontFamily.Roman;

fontl.Pitch = FontPitch.Variable;

fontl.Panose = new List<byte> { 2, 2, 6, 3, 5, 4, 5, 2, 3, 4 };
fontl.Signature.CodePageRangel = 0x000001ff;
fontl.Signature.CodePageRange2 = 0x00000000;
fontl.Signature.UnicodeRangel = O0xEOO002EFF;
fontl.Signature.UnicodeRange2 = 0xC000785B;
fontl.Signature.UnicodeRange3 = 0x00000009;
fontl.Signature.UnicodeRange4 0x00000000;

// Load the "Times New Roman" font data:

byte[] datal = File.ReadAllBytes(@"..\..\..\Resources\Fonts\times.ttf");
// Embed font data into the document:

fontl.Embedded.Add (EmbeddedFontType.Regular, FontDataType.ObfuscatedTrueTypeFont,
datal) ;

Apply Custom Font

To apply custom fonts to runs in your document, you can use Name property of the Font class.

C#

const string myFontNamel = "My Font 1";
GcWordDocument doc = new GcWordDocument () ;
// Use first of the fonts to be embedded:
var p = doc.Body.Paragraphs.Add() ;

var run = p.GetRange () .Runs.Add ($"Text rendered using embedded font \"
{myFontNamel}\".");

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 71

// BApply custom font to the run:

run.Font.Name = myFontNamel;

Embed Fonts using GrapeCity.Documents.Text Namespace

While creating word documents with DsWord, you can use FontCollection and Font classes from
GrapeCity.Documents.Text namespace to embed fonts in a word document. You can embed a single font to the font
collection of word document by using Add method of the FontinfoCollection class or, you can add a list of fonts to
the font collection by using Append method. The SaveOptions class provides various embedded font settings which
control how a document is saved.

C#

// Load font from a .ttf file and set it as the font of the sample text:

var font = GrapeCity.Documents.Text.Font.FromFile (Path.Combine ("Resources",
"Fonts", "SEGA.ttf"));

// Assign the run's font to the font loaded from the file:

run.Font.Name = font.FontFamilyName;

// This embeds the font into the document, without this line the document won't
display correctly

// on a system that does not have the SEGA.ttf font installed:

doc.Fonts.Add (font, true);

Get Embedded Font

To fetch the type and name of fonts embedded in a document, loop through the embedded fonts inside font
collection of the document and use Type property of the EmbeddedFont and Name property of the FontInfo object
respectively.

C#

GcWordDocument doc = new GcWordDocument () ;

// Load a DOCX that contains embedded font:
doc.Load (@"..\..\..\EmbedFonts.docx") ;

var embeddedFont = doc.Fonts.FirstOrDefault (fi => fi .Embedded.Count >
1) ?.Embedded[0];

doc.Body.Paragraphs.Add ("Embedded fonts found in this document:",
doc.Styles[BuiltInStyleId.Headingl]);

var myListTemplate = doc.ListTemplates.Add (BuiltInListTemplateId.BulletDefault,
"myListTemplate") ;

// Enumerate the embedded fonts:
foreach (var fi in doc.Fonts)
{
foreach (var ef in fi.Embedded)
{
var p = doc.Body.Paragraphs.Add(doc.Styles[BuiltInStyleId.ListParagraphl]);
p.ListFormat.Template = myListTemplate;
var run = p.GetRange () .Runs.Add ($"Found embedded font of type {ef.Type} in
font \"{fi.Name}\".");

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 72

run.Font.Name = fi.Name;

if (ef.Type == EmbeddedFontType.Bold)
run.Font.Bold = true;

else 1if (ef.Type == EmbeddedFontType.Italic)
run.Font.Italic = true;

else if (ef.Type == EmbeddedFontType.BoldItalic)
run.Font.Bold = run.Font.Italic = true;

}

//Save Document
doc.Save ("GetEmbeddedFonts.docx") ;

Find and Remove Embedded Fonts

To find and remove embedded fonts from a document, you need to loop through the fonts collection of the
document and call Clear method of the EmbeddedFontCollection which can be accessed through Embedded
property of the FontInfo class.

C#

GcWordDocument doc = new GcWordDocument () ;
// Load a DOCX that contains embedded font:
doc.Load (@"..\..\..\EmbedFonts.docx") ;

// Enumerate the embedded fonts:

foreach (var fi in doc.Fonts)

{
// Remove all embedded fonts:
fi.Embedded.Clear();

}

//Save Document

doc.Save ("FindAndRemoveEmbeddedFont.docx") ;

Use Fonts with Different Culture Languages

DsWord provide Settings class to support Theme Fonts for different language cultures to render documents using
multi-language Font scripts. You can fetch these theme fonts by using properties such as LocaleName,
LocaleNameBi and LocaleNameFarEast. For a particular locale setting, DsWord finds the corresponding font script
in Supplemental map from MinorFont and MajorFont theme font collection and marks them as 'in use'. If an
appropriate font script is not found, DsWord defines font name from the MinorFont and MajorFont theme font
collection. You can get the full list of font being used in the document by using GetFontsinUse method. All fonts
from this list are candidates to be stored in the document but only fonts that are present in the
SaveOptions.AvailableFonts are stored.

With this enhanced API support in place, DsWord also supports documents using cloud fonts. Following code shows
how to embed cloud theme fonts in a Word document and also how to apply different language settings when Fonts
from multiple languages are used

C#

GcWordDocument doc = new GcWordDocument () ;

// set default languages for theme fonts
var settings = doc.Settings;

© 2024 MESCIUS inc. All rights reserved.

https://support.microsoft.com/en-us/office/cloud-fonts-in-office-f7b009fe-037f-45ed-a556-b5fe6ede6adb

Document Solutions for Word 73

settings.LocaleName = "en-US";
settings.LocaleNameBi = "ar-AE";
settings.LocaleNameFarEast = "ja-JP";

// set languages for default font
// so you don't need specify them for each run
var defFont = doc.Styles.DefaultFont;

defFont.LocaleName = "en US";
defFont.LocaleNameBi = "ar-AE";
defFont.LocaleNameFarEast = "ja-JP";

// set minor theme fonts for default font

// so you don't need specify them for each run
defFont.ThemeAscii = ThemeFontType.MinorHighAnsi;
defFont.ThemeBi = ThemeFontType.MinorBidi;
defFont.ThemeFarEast = ThemeFontType.MinorEastAsia;

// add a heading style that uses major theme fonts

Style hstyle = doc.Styles.Add("My Heading", StyleType.Paragraph):;
hstyle.Font.Size = 20;

hstyle.Font.ThemeAscii = ThemeFontType.MajorHighAnsi;
hstyle.Font.ThemeBi = ThemeFontType.MajorBidi;
hstyle.Font.ThemeFarEast = ThemeFontType.MajorEastAsia;
hstyle.Font.ThemeOther = ThemeFontType.MajorHighAnsi;

// modern Microsoft Word documents uses cloud fonts:

// https://support.microsoft.com/en-us/office/cloud-fonts-in-office-£f7b009fe-037f—-
45ed-ab56-bbfebedebadb

// 1f Office 365 is installed on you computer, make your document readable for every

one.

// specify minor theme fonts

var minorFont = doc.Theme.FontScheme.MinorFont;
minorFont.Latin.Name = "Calibri";

// you can specify fonts for any font script
minorFont.Supplemental ["Arab"] = "Aldhabi";
minorFont.Supplemental["Jpan"] = "Yu Mincho";

// specify major theme fonts
var majorFont = doc.Theme.FontScheme.MajorFont;

majorFont.Latin.Name = "Calibri Light";
majorFont.Supplemental ["Arab"] = "Traditional Arabic";
majorFont.Supplemental ["Jpan"] = "Yu Gothic";

// add English text that will use minor and major Latin theme fonts automatically
var pars = doc.Body.Paragraphs;

pars.Add ("Minor font");

pars.Add ("Major font", hstyle);

// add Japanese text that will use minor and major East Asian theme fonts

automatically

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

pars.Add ("~ A F—7 x> b");
pars.Add("A¥Y ¥ —7 4 ¥ h", hstyle);

// add Arabic text that will use minor and major Complex Scrip theme fonts
Paragraph p = pars.Add();

Run run = p.GetRange () .Runs.Add("ss L5 hs");

// need to specify that the run is complex script

run.Font.RightTolLeft = true;

run.Font.HintType = FontHintType.ComplexScript;

p = pars.Add(hstyle);

run = p.GetRange () .Runs.Add (" jwas Il bxJI");

run.Font.RightTolLeft = true;

run.Font.HintType = FontHintType.ComplexScript;

// replace existing fonts and embed all fonts in use to the document
var saveOpts = doc.Settings.SaveOptions;

saveOpts.SaveFontInfos = SaveFontInfos.SaveAll;
saveOpts.FontEmbedMode = FontEmbedMode.All;
var fontsInUse = saveOpts.GetFontsInUse();

// check whether all fonts that are used in the document are available to embed
foreach (string name in fontsInUse.Keys)
{
if (saveOpts.AvailableFonts.FindFamilyName (name) == null)
{
// add cloud fonts to available font list
var fonts = new GrapeCity.Documents.Text.FontCollection();
string cloudFonts =
@"c:\Users\\AppData\Local\Microsoft\FontCache\4\CloudFonts";
// Make sure fonts you assign are downloaded, if not Jjust use them in
Microsoft Word, so they will be loaded automatically
foreach (string fontFolder in Directory.EnumerateDirectories (cloudFonts))
fonts.RegisterDirectory (fontFolder) ;
saveOpts.AvailableFonts = fonts;
break;

// now this document will be displayed correctly on every machine
doc.Save (@"cloud-theme-fonts.docx") ;

© 2024 MESCIUS inc. All rights reserved.

74

Document Solutions for Word 75

Header and Footer

Headers and footers are generally used to display document name, date, page number, etc. In DsWord, headers and
footers of a section are represented by the HeaderFooter class which provides access to the content and settings of
header and footer. These headers and footers have their own body which represents the header and footer content.
The HeaderFooter is not a part of the document body and it does not get derived from the ContentObject class,
hence it is not a content object. The header and footer of a particular section can be accessed using Headers and
Footers properties of the Section class which are of type HeaderFooterCollection class.

In addition, DsWord provides three different types of headers and footers through HeaderFooterType enumeration,
which are listed below:

® Primary - The header or footer that appears on the odd pages.

e EvenPage - The header or footer that appears on the even pages.

® FirstPage - The header that appears only on the first page. When the first page header is not set, the primary
header is displayed on the first page.

However, rendering of headers and footers in a document depends on the following properties::

® LinkToPrevious - This property is provided by the HeaderFooter class. It accepts boolean value to determine
whether the header/footer is linked to the previous section. When the value of this property is set to true for a
section, then the section displays the same header and footer as the previous one.

e DifferentFirstPageHeaderFooter - This property is provided by the PageSetup class. It accepts boolean value
to determine whether the section should have a different header and footer for its first page or not.

e OddAndEvenPagesHeaderFooter - This property is provided by the PageSetup class and accepts boolean
value. When set to true, Primary headers/footers are displayed for odd-numbered pages and EvenPage
headers/footers are displayed for even-numbered pages. When set to false, the Primary type header/footer is
displayed on all the pages of a section. Note that changing the value of this property affects all the section in a
document.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 76

iy -3 HeadesFooter - Microsoft Word = o x
W | -
--r"l Home | Imgert Pagelayout References Mailings Revew View el
T | comn @oay "N A W] [SRR T a.a'sbcm:i naBbceDe AaBbCi % e
T -
nste g BT U ox X A wr- A BB R BB & =] ehoms [THeSpas.. Hesdingd < E{;ﬂ’:sﬂf Eaning
Chipboand & Faml F Paragraph - Syles e
:E] (EEETEE Y Lr4-2-i 3-i-4-i 5 i 6-i F-a-§-:1-3 [T TENS P ¢} 15 L6 SRR
-
g [Pager]
a.- e F ige F
Hello \Waorkd!

Thisis a sample text.

Type the text of your decument here, The galleries for tables, headers & footers, lsts, coverage pages,
and other document building blocks may include additional items that are designed to coardinate with
the overall look of this template.

Whenyouclick on this text and type, these paragraphs will be replaced withyour own content. You can
add text boxesto hold quotes or sidebar content by using the textbox galery onthe Insert tab. You can
alsoiniert pictures, charts, or diagrams into the decurnent.

Tochange the overall look of the docume nt, you can change the theme elements used by selecting new
alements on the Page Setup tab, You can chamge the formatting of the text in the document by
changing the Cuick Styles set thatis inuse via the gallery on the Write tab. Both galleries offer
commands to allow you 1o reset the lookof your document to those stored in the template.

I - Qnthe Ingert b, the galleries include items that are designed to coordinate l:'"-lth the owerall ook of
Page: 1of4 | Words: 1,370 | i35 English [United Stakes) 5 (233 i koo

Add Header and Footer

To add a header and footer to a section:

1. Access a section where you want to add a header and footer. For example, access first section of the document.

2. Use the Headers and Footers properties of the Section class to access the header and footer collection of the
section.

3. Add header and footer, by using the Add method, on different pages, for example, first page, even page, and
odd page.
C#

var section = doc.Body.Sections.First;

//Set different header and footer for the first page of the section
section.PageSetup.DifferentFirstPageHeaderFooter = true;

//Insert first page header and footer
section.Headers[HeaderFooterType.FirstPage] .Body.Paragraphs.Add ("Sectionl:
FirstPage Header");

section.Footers[HeaderFooterType.FirstPage] .Body.Paragraphs.Add("Sectionl:
FirstPage Footer");

//Insert header and footer for odd pages

section.Headers [HeaderFooterType.Primary] .Body.Paragraphs.Add ("Sectionl: 0Odd
Page Header");

section.Footers[HeaderFooterType.Primary] .Body.Paragraphs.Add ("Sectionl: 0Odd

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 77

Page Footer");

//Insert header and footer for even pages
section.Headers[HeaderFooterType.EvenPages] .Body.Paragraphs.Add ("Sectionl: Even
Page Header");

section.Footers[HeaderFooterType.EvenPages] .Body.Paragraphs.Add("Sectionl: Even

Page Footer");

//Add a paragraph to the section
for (var p = 1; p <= 50; p++)
{
section.GetRange () .Paragraphs.Add ("Sectionl: Test Paragraph" +
p.ToString());
}

//Add second section

var section2 = doc.Body.Sections.Add () ;
section2.PageSetup.SectionStart = SectionStart.NewPage;
section2.PageSetup.0ddAndEvenPagesHeaderFooter = true;

//Link the header and footer of pages with the previous section

section?.Headers[HeaderFooterType.Primary] .LinkToPrevious = false;

section2.Footers[HeaderFooterType.Primary] .LinkToPrevious = false;

section2.Headers[HeaderFooterType.EvenPages] .LinkToPrevious = false;
[

section2.Footers[HeaderFooterType.EvenPages] .LinkToPrevious false;

//Insert header and footer for odd and even pages of the second section
section2.Headers[HeaderFooterType.Primary] .Body.Paragraphs.Add ("Section2: 0Odd
Page Header");

section2.Footers[HeaderFooterType.Primary] .Body.Paragraphs.Add ("Section2: 0Odd
Page Footer");

section2.Headers[HeaderFooterType.EvenPages] .Body.Paragraphs.Add ("Section2: Even
Page Header");

section2.Footers[HeaderFooterType.EvenPages] .Body.Paragraphs.Add ("Section2: Even

Page Footer");

//Add a paragraph to the second section
for (var p = 1; p <= 75; p++)
{
section2.GetRange () .Paragraphs.Add ("Section2: Test Paragraph" +
p.ToString());
}

//Save the document
doc.Save ("HeaderFooter.docx") ;

Back to Top

Modify Header and Footer

To modify a header and footer in a section:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 78

1. Access the section whose header and footer needs to be modified. For example, access first section of the
document

2. Access the header and footer collection using Headers and Footers properties of the Section class.
3. Modify text of the header and footer added to the first page using Value property of the Text class.

C#
doc.Load ("HeaderFooter.docx") ;

//Access the first section

var section = doc.Body.Sections.First;

//Modify the header and footer on the first page
section.Headers[HeaderFooterType.FirstPage] .Body.Texts.First.Value =
"Modified first page header";

section.Footers[HeaderFooterType.FirstPage] .Body.Texts.First.Value
"Modified first page footer";

//Save the document

doc.Save ("ModifiedHeaderFooter.docx") ;

Back to Top

Delete Header and Footer

To delete the content of a header and/or footer from a section, you can use Delete method of the ContentObject
class. Alternatively, you can clear content from the header and footer using Clear method of the Body class.

C#

doc.Load ("HeaderFooter.docx") ;

var section = doc.Body.Sections.First;

//Clear the primary header and footer content in the first section
section.Headers [HeaderFooterType.Primary] .Body.Clear () ;
section.Footers[HeaderFooterType.Primary] .Body.Clear () ;

//Delete the primary header's and footer's first paragraph in the second section
var section2 = doc.Body.Sections[1l];

section2.Headers[HeaderFooterType.Primary] .Body.Paragraphs.First.Delete () ;
section2.Footers[HeaderFooterType.Primary] .Body.Paragraphs.First.Delete (),

//Save the document

doc.Save ("DeletedHeaderFooter.docx") ;

Back to Top

For more information on how to implement header and footer in a Word document using DsWord, see DsWord
sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/basics/content/headers/code-cs
https://developer.mescius.com/documents-api-word/demos/basics/content/headers/code-cs

Document Solutions for Word 79

Images

Images are generally used to illustrate important information in your document and highlight points raised in the text.
In DsWord, an image or a picture element is represented by the Picture class which allows you to access all the image
properties. DsWord allows you to add an image on a word document using Add method of the PictureCollection class
that represents a collection of picture elements.

'E'j) H9-0 -+ AddFromFile - Microsoft Word - a b4
- |
Home Insert Page Layout References Mailings Review View Ll
=] & ; . i | | -0 %
B el 1A] =S SR N aasbcen| asebceoc AaBBC o
Paste ; B J U -~ sba x, x Aa- || - . A il 3F I | -Il :-" '\h o | T Momal | T Mo Spaci.. Heading1 o ?t;:"'ﬂ' Editing
= Pl =
Clipboard M Fant T Pasagraph i Styles (]
|-1-|-|.-I-E '_‘n 2 .] '.l- E' [‘.-.' 7 lII K .'- i :3I 1 .l 12 '.:: i :'i [:'-I| ELCRLE FAN R 5

A JPEG image:

TEE

| Page:1of1 | Words:3 | (¥ English [United States)

Add Image from File

To add an image in a document from file:

1. Create a byte array from the image using the ReadAllBytes method.

2. Access the picture collection using Pictures property of the RangeBase class.

3. Add image to the picture collection using Add method of the PictureCollection class, which accepts image as a
byte array. For example, insert an image in the first paragraph.

4. Set properties of the image. For example, set the height and width of the image using Height.Value
and Width.Value properties respectively.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 80

C#

GcWordDocument doc = new GcWordDocument () ;

// Load picture data:
var picBytes = File.ReadAllBytes (Path.Combine ("Resources", "Images",
"road.jpg"))

//Add a paragraph
var pars = doc.Body.Sections.First.GetRange () .Paragraphs;
pars.Add ("A JPEG image:");

// Add picture, specifying its mime type:
var pic = pars.First.GetRange () .Runs.First.GetRange () .Pictures.Add (picBytes,
"image/jpeg") ;

// Set picture size
pic.Size.Width.Value = 500;
pic.Size.Height.Value = 400;

//Save the document
doc.Save ("AddFromFile.docx") ;

Back to Top
To add an image in a document with same size as the input image, you can use System.Drawing.Image namespace:
1. Load an image in a document and add it to the picture collection using Add method of the PictureCollection

class.
2. Verify the size of original and added image by retrieving the value of Height and Width properties.

C#

using DrawingImage System.Drawing.Image;
GcWordDocument doc = new GcWordDocument () ;
//Load image file

var fileName = Path.Combine (@"cat.png");

using (var image = DrawingImage.FromFile (fileName))
{

var pic =
doc.Body.Paragraphs.Add ("") .GetRange () .Runs.First.GetRange () .Pictures.Add (image) ;

//Output: Original Image width is 400 and Added image width is 400

Console.WritelLine (String.Format (@"Original Image width is {0} and Added image
width is {1}", image.Size.Width, pic.Size.Width.Value));

//Output: Original Image height is 300 and Added height is 300

Console.WriteLine (String.Format (@"Original Image height is {0} and Added
height width is {1}", image.Size.Height, pic.Size.Height.Value)):;

doc.Save ("ImageAdded.docx") ;

Limitation

The emf, wmf and ico file formats are not supported while adding images using System.Drawing.Image
namespace.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 81

Back to Top

Similarly, you can add an image in a document with same size as the input image using Image class
of GrapeCity.Documents.Drawing namespace as shown below:

C#
using GcImage = GrapeCity.Documents.Drawing.Image;

GcWordDocument doc = new GcWordDocument () ;
//Load image file

var fileName = Path.Combine (@"cat.png");
using (var image = GcImage.FromFile (fileName))
{
var pic2 =
doc.Body.Paragraphs.Add ("") .GetRange () .Runs.First.GetRange () .Pictures.Add (image) ;

//Output: Original Image width is 400 and Added image width is 400
Console.WritelLine (String.Format (@"Original Image width is {0} and Added image
width is {1}", image2.Width, pic2.Size.Width.Value));
//Output: Original Image height is 300 and Added height is 300
Console.WritelLine (String.Format (@"Original Image height is {0} and Added
height width is {1}", image2.Height, pic2.Size.Height.Value));
doc.Save ("ImageAdded.docx") ;

Limitation

The emf and wmf file formats are not supported while adding images using GrapeCity.Documents.Drawing
namespace.

Back to Top

Add Image from Stream

To add an image in a document from memory stream:

1.
2.
3.

Access a memory stream loaded with image data.

Convert the memory stream to byte array using the ToArray method.

Add the image to picture collection using Add method of the PictureCollection class, which accepts image as a
byte array.

Set some properties of the image. For example, set Height.Value and Width.Value properties.

C#

//Load image to MemoryStream

MemoryStream ms = new MemoryStream() ;

System.Drawing.Image imageIn = System.Drawing.Image.FromFile (Path.Combine (
"Resources", "Images", "road.jpg")):;

imageIn.Save (ms, imageIn.RawFormat) ;

//Convert MemoryStream to byte array
var picBytes = ms.ToArray():;

//Add a paragraph
var pars = doc.Body.Sections.First.GetRange () .Paragraphs;
pars.Add ("A JPEG image:");

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-imaging/docs/online/GrapeCity.Documents.Imaging~GrapeCity.Documents.Drawing.Image.html
https://developer.mescius.com/documents-api-imaging/docs/online/GrapeCity.Documents.Imaging~GrapeCity.Documents.Drawing_namespace.html

Document Solutions for Word 82

// Add picture, specifying its mime type:
var pic = pars.First.GetRange().Runs.First.GetRange () .Pictures.Add (picBytes,
"image/jpeg") ;

// Set picture size
pic.Size.Width.Value = 500;
pic.Size.Height.Value = 400;

//Save the document
doc.Save ("AddFromStream.docx") ;

Back to Top

Get Image
To get an image:

1. Access an image from the picture collection using Pictures property of the RangeBase class.

2. Get the image data using ImageBytes property of the ImageData class.

3. Add the fetched image from the document to another document using Add method of the PictureCollection
class.

C#

doc.Load ("AddFromFile.docx") ;

//Extract image from existing document

Picture oldpic =
doc.Body.Paragraphs.First.GetRange () .Runs.First.GetRange () .Pictures|[0];
byte[] picBytes = oldpic.ImageData.ImageBytes;

//Add extracted image from old document to new document
GcWordDocument testDocument = new GcWordDocument () ;

var pars = testDocument.Body.Sections.First.GetRange () .Paragraphs;
pars.Add ("An old JPEG image:");

// Add picture, specifying its mime type:

var pic = pars.First.GetRange () .Runs.First.GetRange () .Pictures.Add (picBytes,
"image/jpeg") ;

// Set picture size

pic.Size.Width.Value = 500;

pic.Size.Height.Value = 400;

//Save the document
testDocument.Save ("ExtractImage.docx") ;

Back to Top

Edit Image

To edit an image:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 83

1. Access the image from picture collection using Pictures property of the RangeBase class.
2. Change the properties of the image. For example, change the rotation properties such as Angle and VerticalFlip
properties of the ShapeRotation class.

C#

doc.Load ("AddFromFile.docx") ;

//Edit image from existing document
Picture pic =
doc.Body.Paragraphs.First.GetRange () .Runs.First.GetRange () .Pictures[0];

//Set the rotation properties
pic.Rotation.Angle = 45;
pic.Rotation.VerticalFlip = true;

//Save the document
doc.Save ("EditIma" +
"ge.docx") ;

Back to Top

Delete Image

To delete an image from a document, access the image from the picture collection using Pictures property of the
RangeBase class and delete it using the Delete method.

C#

doc.Load ("AddFromFile.docx") ;

//Delete image from existing document
Picture pic = doc.Body.Paragraphs.First.GetRange () .Runs.First.GetRange () .Pictures|[0];
pic.Delete();

//Save the document
doc.Save ("DeleteImage.docx") ;

Back to Top

For more information on how to work with images in a Word document using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/basics/content/picture-add/code-cs

Document Solutions for Word

Shapes

384

In DsWord, all the shape types are represented by the ShapeBase class. This class allows you to work with basic shape
properties like alternative text, positioning, rotation, title, wrapping text around shape etc. The Shape class represent a

single shape element and inherits the ShapeBase class.

In this section, we will discuss about the following shape:

© 2024 MESCIUS inc. All rights reserved.

Textbox
Canvas Shape
Group Shape
Ink Shape
Shape

Shape Format
Picture

Picture Format
Online Video
Presets and Themed Styles
Shape Styles

Document Solutions for Word 85

Textbox

While adding text in a document, certain kind of formatting and placement restrictions are faced. These restrictions
can be overcome by using a textbox which provides the flexibility to add text anywhere in the document and add
certain styles and formatting to it. The textbox is also very helpful for creating a blockquote or a sidebar.

DsWord allows you to add textbox in a document which is a combination of text rendered on a shape element. A
shape can be added by using the Shape class and the text can be rendered over it by using the TextFrame class.
Additionally, DsWord also provides LinkedTextFrame class which provides additional space for textual content if it
does not fit into the original text frame. The LinkedTextFrame is only visible when it accommodates any additional
content. Each shape can have no more than one TextFrame or LinkedTextFrame.

You can also define the formatting of text frame like its orientation, word wrap, margin, auto-fit shape to text etc.
using the TextFrameFormat class.

Document
Solutions for

Add Textbox

To add textbox in a document:

1. Create a new Word document by instantiating the GceWordDocument class.

2. Add a paragraph by using the Add method of ParagraphCollection class.

3. Add a run to the paragraph and shape to the run by using the Add method of RunCollection
and ShapeCollection class respectively.

4. Add a text frame to the shape by using the AddTextFrame method of the Shape class.

5. Add a linked text frame which will accommodate the extra text, if any, by using the AddLinkedTextFrame
method of Shape class.

C#

GcWordDocument doc = new GcWordDocument () ;
Paragraph para = doc.Body.Paragraphs.Add() ;
Run run = para.GetRange () .Runs.Add() ;

//Add shape
Shape shape = run.GetRange () .Shapes.Add (100, 100);

//Add a text frame along with text on shape
TextFrame tf = shape.AddTextFrame ("Document Solutions for Word library is a part

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

of Document Solutions " +
"that aims to be a complete solution to program and work with Word

documents") ;

//Add linked text frame to hold any extra text

LinkedTextFrame 1tf =
doc.Body.Paragraphs.Add () .GetRange () .Runs.Add () .GetRange () .Shapes.Add (100,
100) .AddLinkedTextFrame (tf) ;

doc.Save ("Textbox.docx") ;

Back to Top

Modify Textbox

To modify a textbox:

1. Create a new Word document by instantiating the GcWordDocument class.

2. Load the document containing textbox using Load method of GceWordDocument class.

3. Access the first text frame in the document and set its formatting properties using the Format property
of TextFrame class.

C#

GcWordDocument doc = new GcWordDocument () ;
doc.Load ("Textbox.docx") ;

//Set formatting properties for Textbox

doc.Body.TextFrames[1l] .Format.Orientation = TextOrientation.Vertical;
doc.Body.TextFrames[1l].Format.WordWrap = true;
doc.Body.TextFrames|[1l].Format.VerticalAnchor = TextVerticalAnchor.Bottom;

doc.Save ("Textbox.docx") ;
Back to Top

Delete Textbox

To delete a textbox:

1. Load the document containing textbox using Load method of GcWordDocument class.
2. Delete the textbox shape by using the Delete method of ContentObject class.

C#

GcWordDocument doc = new GcWordDocument () ;
doc.Load ("Textbox.docx") ;

//Delete the textbox shape
doc.Body.Paragraphs[1l].GetRange () .Shapes.First.Delete () ;

doc.Save ("Textboxl.docx") ;

Back to Top

© 2024 MESCIUS inc. All rights reserved.

86

Document Solutions for Word 87

Z] Note: You can also export a Word document containing textbox to PDF and image formats. To know more,
refer Export topic.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 88

Canvas Shape

A canvas shape acts as a container for multiple drawing objects and can be used to organize them all at once.

DsWord allows you to draw a canvas shape and add multiple drawing objects to it. A canvas shape can be added by
using Add and Insert methods of CanvasShapeCollection class. You can also access the previous or next canvas shapes
and apply fill format or line format properties on them by using various methods provided by CanvasShape class.

Add Canvas Shape

To add canvas shape in a document:

Create a new Word document by instantiating GcWordDocument class.

Add a run to a newly added paragraph by using Add method of RunCollection class.

Add a canvas shape by using Add method of CanvasShapeCollection class.

Add two shapes inside canvas shape by using Add method of ShapeCollection class.

Move the horizontal and vertical position of second shape by using Offset property of ShapeHorizontalPosition
class so that it does not overlap the first shape.

C#

uhkhwn =

var doc = new GcWordDocument () ;

//Add Run element
var run = doc.Body.Paragraphs.Add () .GetRange () .Runs.Add() ;

//Create canvas shape with initial width 500 and height 500
var canvas_shape = run.GetRange () .CanvasShapes.Add (500, 500);

//Create two shapes inside canvas shape
var firstShape = canvas_shape.GetRange () .Shapes.Add (202, 250, "First shape");
var secondshape = canvas_shape.GetRange () .Shapes.Add (300, 400, "Second shape");

//Move second shape 100 points right and 100 points lower
secondshape.Position.Horizontal.Offset = 100;
secondshape.Position.Vertical.Offset = 100;

//Save document

doc.Save ("CanvasShape.docx") ;
Back to Top

Delete Canvas Shape

To delete canvas shape in a document:

1. Load the document containing canvas shape using Load method of GeWordDocument class.
2. Delete the canvas shape by using Delete method of ContentObject class.

C#

//Load document
doc.Load ("CanvasShape.docx") ;

//Access first canvas

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

CanvasShape cs = doc.Body.CanvasShapes.First;
//Delete canvas
cs.Delete();

doc.Save ("CanvasDelete.docx") ;

Back to Top
Limitations

e Unsupported Properties: NonVisualGroupDrawingShapePropsExtensionList, GroupShapelLocks,
OfficeArtExtensionList, Scene3DType, ShapePropertiesExtensionList

e Unsupported Effects and derived classes: EffectsDAG,EffectsList, WholeFormattingEffectList,
WholeFormattingEffectDag

© 2024 MESCIUS inc. All rights reserved.

89

Document Solutions for Word

Group Shape

90

Group shape is a shape element which can be used to add multiple shapes which need to be grouped together. It

provides unified properties for child shapes and can be regarded as a shape container.

DsWord allows you to add a group shape and add multiple shapes to it. A group shape can be added by using Add
and Insert methods of GroupShapeCollection class. You can also access the previous or next group shapes, apply fill
format or group fill properties and ungroup the grouped shapes by using methods provided by GroupShape class.

| ["§| Note: Deleting a group shape deletes all the shapes inside it.

Add Group Shape

To add group shape in a document:

1. Create a new Word document by instantiating GcWordDocument class.
2. Add a run to a newly added paragraph by using Add method of RunCollection class.
3. Add a group shape by using Add method of GroupShapeCollection class.
4. Add two shapes inside group shape by using Add method of ShapeCollection class.
5. Move the horizontal and vertical position of second shape by using Offset property of
ShapeHorizontalPosition class so that it does not overlap the first shape.
C#
var doc = new GcWordDocument () ;
//Add run element
var run = doc.Body.Paragraphs.Add () .GetRange () .Runs.Add() ;
//Create group shape with initial width 500 and height 500
var group shape = run.GetRange () .GroupShapes.Add (500, 500);
//Create two shapes inside group shape
var firstShape = group shape.GetRange () .Shapes.Add (202, 250, "First shape");
var secondshape = group shape.GetRange () .Shapes.Add (300, 400, "Second shape");
//Move second shape 100 points right and 100 points lower
secondshape.Position.Horizontal.Offset = 100;
secondshape.Position.Vertical.Offset = 100;
//Save document
doc.Save ("GroupShape.docx") ;
Back to Top

Delete Group Shape

To delete group shape in a document:

1. Load the document containing group shape using Load method of GcWordDocument class.
2. Delete the group shape by using Delete method of ContentObject class.

C#

//Load document

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

doc.Load ("GroupShape.docx") ;

//Access first group shape

GroupShape gs = doc.Body.GroupShapes.First;
//Delete group shape

gs.Delete() ;

doc.Save ("GroupDelete.docx") ;

Back to Top
Limitations

e Unsupported Properties: NonVisualGroupDrawingShapePropsExtensionList, GroupShapeLocks,
OfficeArtExtensionList, Scene3DType, ShapePropertiesExtensionList
e Unsupported Effects and derived classes: EffectsDAG and EffectsList

© 2024 MESCIUS inc. All rights reserved.

91

Document Solutions for Word 92

Ink Shape

Ink shapes are user-drawn shapes which can include lines and curves.

DsWord supports ink shapes which can be added by using Add and Insert methods of InkShapeCollection class. You
can also access the previous or next ink shapes and get the xml document containing ink shape's content by using
various methods provided by InkShape class.

In DsWord, you can create a new ink shape by providing an xml document which describes ink drawing or load a
document with predefined ink shapes.

Modify Ink Shape

To modify an existing ink shape in a document:

1. Load the document containing ink shape using Load method of GeWordDocument class.

2. Access the ink shape by using InkShapes property of RangeBase class.

3. Modify ink shape by setting various properties of ShapeBase class like AlternativeText, Rotation, Title, Height
and Width etc

C#

var doc = new GcWordDocument () ;

//Load doc containing ink shape
doc.Load ("ink.docx") ;

if (doc.Body.InkShapes.Count == 0)

return;

//Access first ink shape
var ink = doc.Body.InkShapes.First;

//Modify Ink shape

ink.BlackWhiteMode = BlackWhiteMode.LightGray;
ink.AlternativeText = "xyz";
ink.Rotation.HorizontalFlip = true;

ink.Title = "ink shape title";
ink.Size.Height.Value = 300;
ink.Size.Width.Value = 100;

//Save document
doc.Save ("InkShapeModified.docx") ;

Back to Top

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 93

Shape

DsWord allows you to add predefined geometrical shapes which are visual figures with filling and outline. A few
examples of shapes include rectangle, arrow, ellipse, hexagon etc. A shape can be added in a document by using Add
and Insert methods of ShapeCollection class. You can also access the previous or next shapes, apply fill format, line
format, group fill, shape style etc. by using methods provided by Shape class.

DsWord supports 188 geometrical shapes which can be viewed by downloading the Word document.
To add shape in a document:
1. Create a new Word document by instantiating GcWordDocument class.

2. Add a run to a newly added paragraph by using Add method of RunCollection class.
3. Add an arc shape by using Add method of ShapeCollection class and pass GeometryType.Arc as its

parameter.

4. Set its fill formatting property and theme color by using FillType and ThemeColorld enumeration.
C#
var doc = new GcWordDocument () ;

//Create a Run element
var run = doc.Body.Paragraphs.Add () .GetRange () .Runs.Add() ;

//Add an arc shape

var shape = run.GetRange () .Shapes.Add (200, 300, GeometryType.Arc);
shape.Line.Fill.Type = FillType.Solid;
shape.Line.Fill.SolidFill.ThemeColor = ThemeColorId.Accent4;

doc.Save ("shape.docx") ;

Back to Top

Z] Note: You can also export Word document containing shapes to PDF and image formats. To know more,
refer Export topic.

Limitations

Effects and derived classes (EffectsDAG, EffectsList) are not supported.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 94

Shape Format

DsWord allows you to enhance the look of shapes by customizing shape formats. As a shape represents a visual figure
containing fill and outline, you can customize its fill format as well as line format. You can also add a shadow to the
shape and set the shadow format.

Fill Format

The fill format of a shape can be customized by using FillFormat class which
provides PatternFill, SolidFill, ImageFill, GradientFill properties that represent relevant fill types. The FillType
enumeration can be used to define the active fill type.

To add gradient type fill format to a shape:

1. Add a rectangle shape to a Word document by using Add method of ShapeCollection class
and pass GeometryType.Rectangle as its parameter.
2. Set FillType enumeration to Gradient to set gradient fill format.
3. Add gradient stops at different positions in the shape by using Add method of GradientStopList class.

C#

var doc = new GcWordDocument () ;
var run = doc.Body.Paragraphs.Add () .GetRange () .Runs.Add() ;
var shape = run.GetRange () .Shapes.Add (300, 300, GeometryType.Rectangle);

//Set fill format to gradient
shape.Fill.Type = FillType.Gradient;

//create additional gradient stops

//position range is 0..100.

shape.Fill.GradientFill.Stops.Add (ThemeColorId.Light2, 10f);
shape.Fill.GradientFill.Stops.Add (ThemeColorId.Accent2, 70f);
shape.Fill.GradientFill.Stops.Add (ThemeColorId.Light2, 87f);

doc.Save ("fillformat.docx") ;
Back to Top

Line Format

The line format of a shape defines appearance of a shape's line. It can be customized by using LineFormat class and can
be set to solid, gradient, image, pattern fill types. You can also set various types of line formats like dash type, cap type,
join type etc. by using properties of LineFormat class.

To add solid type line format to a shape:

1. Add a rectangle shape to a Word document by using Add method of ShapeCollection class
and pass GeometryType.Rectangle as its parameter.

2. Set FillType enumeration to Solid to set solid line format.

3. Set LineDashType and LineJoinType enumerations to set dash type and join type of line.

C#

var doc = new GcWordDocument () ;
var run = doc.Body.Paragraphs.Add () .GetRange () .Runs.Add() ;
var shape = run.GetRange () .Shapes.Add (300, 300, GeometryType.Rectangle);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 95

//Set line format to solid
shape.Line.Fill.Type = FillType.Solid;
//Set line type to dotted
shape.Line.DashType = LineDashType.Dot;
//Set line join type to round
shape.Line.JoinType = LineJoinType.Round;

doc.Save ("lineformat.docx") ;
Back to Top

Shadow Format

The shadow format adds additional depth to a shape and creates a three-dimensional effect. DsWord allows you to
apply shadow format to shape using ApplyBuiltinShadow method of the ShapeEffects class that

accepts BuiltinShadowld enumeration as its parameter. However, for applying custom shadow effect to a shape, you can
use OuterShadow, InnerShadow or ShadowPreset type of the ShapeEffects class and set their properties.

The code below shows how to apply built-in shadow effect to a shape:

C#

// apply lower right prospective offset shadow effect to the shape
shape.Effects.ApplyBuiltInShadow (BuiltInShadowId.ProspectiveLowerRight) ;

The code below shows how to apply custom shadow effect to a shape:

C#

var canvas_shape = run.GetRange () .CanvasShapes.Add (500, 500);

var shape2 = canvas_ shape.GetRange () .Shapes.Add (202, 250, "Shape");
shape2.Fil1.501idFill.RGB = Color.LemonChiffon;
shape2.Position.Horizontal.Offset = 4f;

var shape2InnerShadow = shape2.Effects.InnerShadow;
shape2InnerShadow.Blur = 4f;
shape2InnerShadow.Color.RGB = Color.Green;
shape2InnerShadow.Angle = 35;
shape2InnerShadow.Distance = 40f;

Blur Format

The blur effect makes the edges of shapes appear fuzzy or out of focus. DsWord allows you to apply blur effect to the
shape by using Blur property of the ShapeEffects class. You can also apply this effect through shape styles.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 96

C#

// Shape Blur - direct:

Paragraph p = doc.Body.Paragraphs.Add() ;

Run run = p.GetRange () .Runs.Add() ;

Shape shape = run.GetRange () .Shapes.Add (100, 100, GeometryType.Star4d);
shape.Fill.Type = FillType.Solid;

shape.Fill.S0l1idFill.RGB = Color.Yellow;

shape.Line.Width = 4;

shape.Line.Fill.S0lidFill.RGB = Color.Red;

// apply 7 point blur effect to the shape

shape.Effects.Blur.Radius = 7f;

p.GetRange () .Runs.Add ("Shape Blur - direct.", doc.Styles[BuiltInStyleId.Strong]);

To view this sample code in action, see Blur Effect demo sample.

Reflection Format

DsWord allows you to apply reflection format to shape using ApplyBuiltinReflection method of the ShapeEffects class
that accepts BuiltinReflectionld enumeration as its parameter. You can also use styles to define and apply custom
reflection effects to a shape.

The code below shows how to apply built-in reflection to a shape using the ApplyBuiltinReflection method:

C#

// Shape reflection - direct effects:

Paragraph p = doc.Body.Paragraphs.Add() ;

Run run = p.GetRange () .Runs.Add() ;

Shape shape = run.GetRange () .Shapes.Add (100, 100, GeometryType.Heptagon);
shape.Fill.Type = FillType.Solid;

shape.Fill.S0lidFill.RGB = Color.PeachPuff;

shape.Line.Width = 4;

shape.Line.Fill.SolidFill.ThemeColor = ThemeColorId.Accentl;
shape.Effects.ApplyBuiltInReflection (BuiltInReflectionId.TightTouching) ;

The code below shows how to apply custom reflection effect to a shape:

C#

Paragraph p = doc.Body.Paragraphs.Add() ;

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/features/effects/blur-effect/word-cs

Document Solutions for Word 97

Run run = p.GetRange () .Runs.Add()

var canvas_shape = run.GetRange () .CanvasShapes.Add (500, 500);

var shape = canvas_shape.GetRange () .Shapes.Add (202, 250, "Shape");
shape.Fill.S0lidFill.RGB = Color.Red;
shape.Position.Horizontal.Offset = 4f;

var shapeCustomReflection = shape.Effects.Reflection;
shapeCustomReflection.Angle = 35;

shapeCustomReflection.Distance = 40f;

To view the code in action, see Reflection Effect demo sample.

Glow Format

DsWord allows you to apply glow effect to shape using ApplyBuiltinGlow method of the ShapeEffects class that

accepts BuiltinGlowld enumeration as its parameter. You can also use styles to define and apply custom glow effects to
a shape.

The code below shows how to apply built-in glow to a shape using the ApplyBuiltinGlow method:

C#

var shape = run.GetRange () .Shapes.Add (100, 100, GeometryType.Starh);
shape.Fill.Type = FillType.Solid;

shape.Fill.So0lidFill.ThemeColor = ThemeColorId.Accentl;

// apply 18 point accent 6 glow effect to the shape
shape.Effects.ApplyBuiltInGlow (BuiltInGlowId.Radiusl8Accent6) ;
p.GetRange () .Runs.Add ("Shape glow - direct.", doc.Styles[BuiltInStyleId.Strong]);

The code below shows how to apply custom glow effect to a shape:

C#

var canvas_shape = run.GetRange () .CanvasShapes.Add (900, 900);

var shape = canvas_shape.GetRange () .Shapes.Add (102, 102, "Shape");
shape.Fill.S0lidFill.RGB = Color.LemonChiffon;
shape.Position.Horizontal.Offset = 9f;

var shapeGlow = shape.Effects.Glow;

shapeGlow.Radius 30;

shapeGlow.Color.RGB = Color.Red;

To view the code in action, see Glow Effect demo sample.

SoftEdge Format

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/features/effects/reflection-effect/word-cs
https://developer.mescius.com/documents-api-word/demos/features/effects/glow-effect/word-cs

Document Solutions for Word 98

DsWord allows you to apply SoftEdge effect to the shape by using SoftEdge property of the ShapeEffects class. You can
also apply this effect through shape styles.

C#

// Shape Soft Edge - direct:

Paragraph p = doc.Body.Paragraphs.Add() ;

Run run = p.GetRange () .Runs.Add() ;

Shape shape = run.GetRange () .Shapes.Add (100, 100, GeometryType.Star7);
shape.Fill.Type = FillType.Solid;

shape.Fill.S0lidFill.RGB = Color.Yellow;

shape.Line.Width = 8;

shape.Line.Fill.S0lidFill.RGB = Color.Red;

// apply 5 point soft edge effect to the shape
shape.Effects.SoftEdge.Radius = 5f;
p.GetRange () .Runs.Add ("Shape Soft Edge - direct.", doc.Styles[BuiltInStyleId.Strong]);

To view this sample code in action, see SoftEdge Effect demo sample.

FillOverlay Format

DsWord allows you to apply FillOverlay effect to the shape by using FillOverlay property of the ShapeEffects class. You
can also apply this effect through shape styles.

C#

// Shape fill overlay - direct:

var p = doc.Body.Paragraphs.Add() ;

var run = p.GetRange () .Runs.Add() ;

var shape = run.GetRange () .Shapes.Add (100, 100, GeometryType.Star8);
shape.Fill.Type = FillType.Solid;

shape.Fill.S0l1idFill.RGB = Color.LightBlue;

// Apply solid fill overlay with another color to mix with the main fill:
FillOverlay overlay = shape.Effects.FillOverlay;

overlay.BlendMode = BlendMode.Multiply;

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/features/effects/softedge-effect/word-cs

Document Solutions for Word 99

overlay.Fill.Type = FillType.Solid;
overlay.Fill.SolidFill.RGB = Color.Yellow;
p.GetRange () .Runs.Add ("Shape fill overlay - direct.",
doc.Styles[BuiltInStyleId.Strongl]) ;

To view this sample code in action, see FillOverlay Effect demo sample.

3D Format

The 3D effects refer to the effects applied in three spatial dimensions: width, height, and depth. The 3D effects give the
shape a unique and artistic look. For applying 3D effects, DsWord provides the ThreeDFormat and ThreeDScene classes
and the ApplyEffectsPreset method. The ApplyEffectsPreset method allows a user to add preset 3D effects. However, the
ThreeDFormat and ThreeDScene classes allow a user to add custom 3D effects.

Preset 3D Effect Custom 3D Effect 3D Rotation

Refer to the following example code to add a preset 3D effect:

C#

// Initialize GcWordDocument.
GcWordDocument doc = new GcWordDocument () ;

// Add a shape to the document.

Paragraph paragraph = doc.Body.Paragraphs.Add() ;

Run run = paragraph.GetRange () .Runs.Add () ;

Shape shape = run.GetRange () .Shapes.Add (200, 200, GeometryType.Rectangle);
shape.Fill.Type = FillType.Solid;

shape.Fill.S0lidFill.ThemeColor = ThemeColorId.Accentl;

// RApply a preset 3D shape effect.
shape.ApplyEffectsPreset (ShapeEffectsPreset.Presetl0);

// Save the Word document.
doc.Save ("Preset3DEffects.docx") ;

Refer to the following example code to add a custom 3D effect:

C#

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/features/effects/fill-overlay-effect/word-cs

Document Solutions for Word

// Initialize GcWordDocument.
GcWordDocument doc = new GcWordDocument () ;

// Add a shape to the document.
Paragraph paragraph = doc.Body.Paragraphs.Add() ;
Run run = paragraph.GetRange () .Runs.Add () ;

var shape = run.GetRange () .Shapes.Add (200, 200, GeometryType.Rectangle);

shape.Fill.Type = FillType.Solid;
shape.Fill.So0lidFill.ThemeColor = ThemeColorId.Accentl;

// BApply 3D format to the shape.

ThreeDFormat threeD = shape.Effects.ThreeDFormat;
threeD.TopBevel.ApplyPreset (BevelType.Convex) ;
ThemeColorId.Accent2;

threeD.Contour.Color.ThemeColor
threeD.Contour.Width = 3f;
threeD.Contour.Color.ThemeColor
threeD.Contour.Width = 12f;

ThemeColorId.Accent6;

// Bpply 3D scene to the shape.
ThreeDScene scene = shape.Effects.ThreeDScene;
scene.Camera.Preset = CameraPreset.PerspectiveContrastingRightFacing;

scene.Lighting.Type LightRigType.BrightRoom;
scene.Lighting.Rotation.Latitude = 90f;

scene.Lighting.Rotation.Revolution = 5f;

// Save the Word document.
doc.Save ("3DEffects.docx") ;

Refer to the following example code to add a 3D rotation effect:

C#

// Initialize GcWordDocument.
GcWordDocument doc = new GcWordDocument () ;

// Add a shape to the document.
Paragraph paragraph = doc.Body.Paragraphs.Add();
Run run = paragraph.GetRange () .Runs.Add () ;

Shape shape = run.GetRange () .Shapes.Add (200, 200, GeometryType.Rectangle);

shape.Fill.Type = FillType.Solid;
shape.Fill.So0lidFill.ThemeColor = ThemeColorId.Accentl;

shape.Line.Fill.Type = FillType.NoFill;

// Add outershadow to the shape.

OuterShadow shadow = shape.Effects.Shadow;
shadow.Alignment = RectangleAlignment.Center;
shadow.Angle = 87f;

shadow.Blur = 17.75f;

shadow.Distance = 4f;

shadow.Color.RGB = Color.FromArgb (255, 0, 0, 0);
shadow.Color.Transparency = 0.67f;

© 2024 MESCIUS inc. All rights reserved.

100

Document Solutions for Word

// Apply 3D format.

ThreeDFormat threeDFormat = shape.Effects.ThreeDFormat;
threeDFormat.Depth.Width = 20f;

threeDFormat.Contour.Width = 1.5f;
threeDFormat.Contour.Color.RGB = Color.FromArgb (255, 255, 255,

// Add top bevel.

Bevel topbevel = threeDFormat.TopBevel;
topbevel.Type = BevelType.Angle;
topbevel.Width = 6.5f;

topbevel.Height = 3.5f;

// Add bottom bevel.

Bevel bottomBevel = threeDFormat.BottomBevel;
bottomBevel.Type = BevelType.Angle;
bottomBevel.Width = 6.5f;

bottomBevel.Height = 3.5f;

// Rpply 3D scene.

Lighting lighting = shape.Effects.ThreeDScene.Lighting;
lighting.Type = LightRigType.Harsh;

lighting.Direction = LightRigDirection.Top;
lighting.Rotation.Latitude = 0f;
lighting.Rotation.Longitude = 0f;
lighting.Rotation.Revolution = 50f;

// Apply rotation to the shape.

Camera camera = shape.Effects.ThreeDScene.Camera;
camera.Preset = CameraPreset.PerspectiveFront;
camera.Perspective = 55f;
camera.Rotation.Latitude = 8.1f;
camera.Rotation.Longitude = 325.5f;
camera.Rotation.Revolution = 2.9f;

// Save the Word document.
doc.Save ("Shape3DRotation.docx") ;

Limitation

DsWord does not support the export of 3D effects to PDF or images.

© 2024 MESCIUS inc. All rights reserved.

255);

101

Document Solutions for Word

Picture

102

DsWord allows you to add pictures in documents and apply various settings on them. A picture can be added by
using Add and Insert methods of PictureCollection class. You can also access the previous or next pictures, apply fill

format, line format, shape style, set alternative text, title etc. by using methods provided by Picture class.

To add picture in a document:

1. Create a new Word document by instantiating GcWordDocument class.

2. Add a run to a newly added paragraph by using Add method of RunCollection class.
3. Add a picture by using Add method of PictureCollection class.

4. Set the position, width and outline color of picture by using various properties.

C#

var doc = new GcWordDocument () ;

//Create run element
var run = doc.Body.Paragraphs.Add () .GetRange () .Runs.Add() ;

//Add a picture
var pic = run.GetRange () .Pictures.Add();

pic.ImageData.SetImage (new Uri ("Resources/picture.png"), "image/png");

//Shift picture position 100 points lower

pic.Position.Vertical.RelativeTo = ShapeVerticalRelativePosition.Page;

pic.Position.Vertical.Offset = 100;

//Set outline width
pic.Line.Width = 2;

//Increase "effective size" of shape by same value as outline width

pic.Size.EffectExtent.AllEdges = 2;

//set outline color

pic.Line.Fill.Type = FillType.Solid;
pic.Line.Fill.S0lidFill.RGB = System.Drawing.Color.Red;

doc.Save ("Picture.docx") ;

Back to Top

Limitations

Effects and derived classes (EffectsDAG, EffectsList) are not supported.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 103

Picture Format

DsWord allows you to enhance the look of a picture by customizing the picture formats using EmbeddedimageData
and ImageData classes. ImageData class enables you to apply effects, adjust brightness, contrast, sharpness, etc., and
change the color to a preset color or a custom color.

Apply Picture Effects

DsWord allows you to enhance your picture by adding picture effects, such as blur, grayscale, tint, duo tone, fill
overlay, etc using Effects property of ImageData class.

Refer to the following example code to add grayscale effect to the picture:

C#
// Initialize GcWordDocument.

GcWordDocument doc = new GcWordDocument () ;

// Read PNG image from a file.
var bytes = File.ReadAllBytes (@"image.png");

// Add PNG picture into the document.
var picture = doc.Body.AddParagraph () .AddRun () .AddPicture (bytes, @"image/png", 300f,
300f) ;

// Add grayscale to the picture.
picture.ImageData.Effects.AddGrayscale() ;

// Save the Word document.
doc.Save (@"picture-effects.docx") ;

Original Grayscale Effect

Adjust Picture Settings

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 104

DsWord allows you to enhance your picture by adjusting the picture settings, such as brightness, contrast,
temperature, saturation, and sharpness, using ImageData property of Picture class.

Refer to the following example code to adjust the brightness and contrast of a picture:

C#

// Initialize GcWordDocument.
GcWordDocument doc = new GcWordDocument () ;

// Read PNG image from a file.
var bytes = File.ReadAllBytes (@"image.png");

// Add PNG picture into the document.
var picture = doc.Body.AddParagraph () .AddRun () .AddPicture (bytes, @"image/png", 300f,
300f) ;

// Increase the picture brightness.
picture.ImageData.Brightness = 0.5f;

// Decrease the picture contrast.
picture.ImageData.Contrast = -0.5f;

// Save the Word document.
doc.Save (@"picture-settings.docx") ;

Original Brightness and Contrast Adjusted

Change Picture Color

DsWord allows you to enhance your picture by adjusting the picture color to a preset color or desired colors
using Recolor method of ImageData class and AddColorChange method of ImageEffectList class.

Refer to the following example code to adjust the picture color to a preset color:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 105

C#

// Initialize GcWordDocument.
GcWordDocument doc = new GcWordDocument () ;

// Read PNG image from a file.
var bytes = File.ReadAllBytes (@"image.png");

// Add PNG picture into the document.
var picture = doc.Body.AddParagraph () .AddRun () .AddPicture (bytes, @"image/png", 300f,
300f) ;

// Recolor the picture to grayscale.
picture.ImageData.Recolor (RecolorType.AccentlLight) ;

// Save the Word document.
doc.Save (@"recolor-preset.docx");

Original Preset Color: Accent1Light

Refer to the following example code to adjust the picture color to the desired color:

C#

// Initialize GcWordDocument.
GcWordDocument doc = new GcWordDocument () ;

// Read JPEG image from a file.
var bytes = File.ReadAllBytes (@"image.png") ;

// Add JPEG picture into the document.
var picture = doc.Body.AddParagraph () .AddRun () .AddPicture (bytes, @"image/png", 300f,
300f%) ;

// Change blue to green color in the picture.
picture.ImageData.Effects.AddColorChange (new UserColor (Color.FromArgb (15,17,19)), new

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 106

UserColor (Color.Green)) ;

// Save the Word document.
doc.Save (@"recolor-desired-color.docx") ;

Original Picture Color Adjusted

Set Picture Color Transparency

DsWord allows you to set picture color transparency using SetColorTransparent method of ImageData class.

Refer to the following example code to set the black color to transparent:
C#
// Initialize GcWordDocument.

GcWordDocument doc = new GcWordDocument () ;

// Read PNG image from a file.
var bytes = File.ReadAllBytes (@"image.png");

// Add PNG picture into the document.

var picture = doc.Body.AddParagraph () .AddRun () .AddPicture (bytes, @"image/png", 300f,
300f) ;

// Set black color transparent in the picture.

picture.ImageData.SetColorTransparent (new UserColor (Color.FromArgb (15, 17, 19)));

// Save the Word document.

doc.Save (@"set-transparent-color.docx") ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 107

Original Black Color- Transparent

Limitations

DsWord does not support picture effects in exporting to PDF and images at this time.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 108

Online Video

DsWord allows you to insert and play online videos directly from the document without leaving the document. You
can add an online video to the document by inserting the URL of the video into the picture created with Picture
class using SetUrl method of WebVideoProperties class.

SetUrl method has three overloads, allowing users to specify the input URL, title, height, and width of the video. This
method generates the appropriate EmbeddedHtml property string internally, providing a convenient way for users to
define these parameters that may be challenging to write directly.

Z] Note: EmbeddedHtml property will receive width and height either from parameters or directly
from Width and Height properties of WebVideoProperties class when the user uses an overload without them.
EmbeddedHtml, Width, and Height properties are serialized as distinct OpenXML tags.

Refer to the following example code to insert the URL of the video to add online video to the document:

C#

// Initialize GcWordDocument.
var doc = new GcWordDocument () ;

// Add picture to document.
var image = doc.Body.Paragraphs.Add() .AddRun () .AddPicture();

// Set poster frame image.
byte[] imageBytesl = File.ReadAllBytes ("sunrise.jpg"):;
image.ImageData.SetImage (imageBytesl, contentType: "image/Jjpg");

// Add online video Url and set title, width, and height.
image.ImageData.WebVideoProperties.SetUrl ("https://www.youtube.com/watch?

v=gsngXt7dlmU&list=PL4Gr5tOAPttLOYIIrWVjJlv4CtkYI5cI &index=2", "Sunrise", 600, 300);

// Save the document.
doc.Save ("OnlineVideo.docx") ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 109

Limitations

Microsoft Word ignores the parameters of SetUrl method (width, height, and title) and Width and Height properties.
The effects of these parameters and properties may be visible in alternative applications that also work with Word

files.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 110

Presets and Themed Styles

In DsWord, shape formatting can be applied by using either of the two ways below:

® |ineFormat and FillFormat properties
® Shape styles

If LineFormat and FillFormat properties of a shape are not defined, the fill and line styles (shape styles) are used. But
these shape styles are not picked up automatically (in absence of LineFormat and FillFormat properties). The shape
styles are only applied when ApplyThemedStyle method is used.

Hence, ApplyThemedStyle method resets original shape formatting and force shape styles to be applied instead.
Whereas ApplyPreset method overwrites its FillFormat and LineFormat properties to define a new formatting of shape.

DsWord provides a wide range of predefined preset and themed styles, of which:

® Presets can be applied on shapes and pictures both
® Themed styles can be applied only on shapes

Apply Presets

Shape class provides overloaded ApplyPreset methods where LineShapePreset parameter defines presets for non-
fillable shapes like lines,curves etc. and ShapePreset parameter defines preset of colored shape and outline fills.

To apply preset on a non-fillable shape:

1. Add an arc to a Word document by using Add method of ShapeCollection class
and pass GeometryType.Arc as its parameter.

2. Apply a preset on shape by using ApplyPreset method and set LineShapePreset enumeration to
Accent2ColorSolidDashArrowTail.

C#
var doc = new GcWordDocument () ;

var run = doc.Body.Paragraphs.Add () .GetRange () .Runs.Add() ;
var shape = run.GetRange () .Shapes.Add (200, 300, GeometryType.Arc);

//RApply LineShapePreset as ShapePreset is not applicable to Arc
shape.ApplyPreset (LineShapePreset.Accent2ColorSolidDashArrowTail) ;

doc.Save ("ShapePreset.docx") ;

Back to Top

Picture class provides ApplyPreset method to set preset on a picture.

To apply preset on a picture:

1. Add a picture to a Word document by using Add method of PictureCollection class and set image's path as
a parameter to Setimage method.

2. Apply a preset on picture by using ApplyPreset method and set PicturePreset enumeration to
BeveledOvalBlack.

C#
var doc = new GcWordDocument () ;
var run = doc.Body.Paragraphs.Add () .GetRange () .Runs.Add() ;

var pic = run.GetRange () .Pictures.Add() ;
pic.ImageData.SetImage (new Uri ("Resources/folder.png"), "image/png");

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 111

//Apply picture preset
pic.ApplyPreset (PicturePreset.BeveledOvalBlack) ;

doc.Save ("PicturePreset.docx") ;

Back to Top

] Note: Picture presets use heavy Effects, which are not supported currently. Hence, its results do not look like
Word.

Apply Themed Styles

Shape class provides overloaded ApplyThemedStyle methods where ThemeLineStyle parameter defines themed
styles for non-fillable shapes like lines,curves etc. and ThemeShapeStyle parameter defines themed styles of colored
shape and outline fills.

To apply themed style on a shape:
1. Add a rounded rectangle shape to a Word document by using Add method of ShapeCollection class
and pass GeometryType.RoundRectangle as its parameter.

2. Apply predefined themed style on shape by using ApplyThemedStyle method and set ThemeShapedStyle
enumeration to Light1SolidFillAccent5WiderOutline.

C#

var doc = new GcWordDocument () ;
var run = doc.Body.Paragraphs.Add() .GetRange () .Runs.Add() ;
var shape = run.GetRange () .Shapes.Add (200, 300, GeometryType.RoundRectangle);

//Bpply predefined themed style
shape.ApplyThemedStyle (ThemedShapeStyle.LightlSolidFillAccent5WiderOutline) ;

//Now shape has Fill.SolidFill.ThemeColor == ThemeColorId.Lightl
//And outline Line.Fill.SolidFill colored to ThemeColor.Accent5

doc.Save ("ApplyShapeStyle.docx") ;

Back to Top
Z] Note: In case of applying presets and themed styles on shapes, the use of appropriate overload method depends
on the GeometryType of the Shape. If selected overload is not applicable to the shape's geometry, it will return

false.

Limitations

Effects and derived classes (EffectsDAG, EffectsList) and custom geometry of shapes are not supported.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 112

Shape Styles

DsWord allows you to define or customize shape styles to enhance the appearance of a shape. You can apply
following effects to the shapes as well as pictures:

Fill and Line Effect

DsWord provides Fill and Line properties of the ShapeStyle class to get the fill and line style of a shape. The StyleFill
class provides ThemeFill property which defines the fill style and PlaceholderColor property which overrides the
predefined color of a theme fill style. Similarly, the StyleLine class provides ThemelLine property which defines the line
style and PlaceholderColor property which overrides the predefined color of a theme line style. The PlaceholderColor
can be of the type SolidColor or GradientColor.

The properties of FormatScheme class can be used to define the background fill styles, effect styles, fill styles, and line
styles which define the style matrix for a theme.

To apply themed style on a shape, refer Apply Themed Styles.

] Note: If FilFormat or LineFormat properties are not defined on a shape, their value is taken from Shape style (if
present) by using ApplyThemedStyle method.

To change existing style on a shape:

1. Add a rectangle shape to a Word document by using Add method of ShapeCollection class
and pass GeometryType.Rectangle as its parameter.

2. Apply themed style on shape by using ApplyThemedStyle method and set ThemeShapedStyle enumeration
to Accent6SolidFillLight1WidestOutline.

3. Set ThemeColor to Accent3 to change the placeholder color of predefined themed style.

Set the width of ThemelLine to 100 by using Width property of LineFormat class.

5. Set the line color of ThemelLine to yellow by using RGB property of SolidColor class.

C#

>

var doc = new GcWordDocument () ;
var run = doc.Body.Paragraphs.Add () .GetRange () .Runs.Add() ;
var shape = run.GetRange () .Shapes.Add (300, 300, GeometryType.Rectangle);

//Rpply style to shape which will have Accent6 color and Lightl colored outline
shape.ApplyThemedStyle (ThemedShapeStyle.Accent6S0lidFillLightlWidestOutline) ;

//Change Shape style placeholder color to Accent3
//As it is Placeholder color, it will affect ONLY this shape
shape.Style.Fill.PlaceholderColor.ThemeColor = ThemeColorId.Accent3;

//Change Shape style line width. Now all shapes which apply this style will have
outline of width 100 pixels.

shape.Style.Line.ThemeLine.Width = 100;

//Change Style line color. Now it will ignore Placeholder color and will always
be yellow for every shape and ThemedStyle presets it used

shape.Style.Line.ThemeLine.Fill.SolidFill.RGB = System.Drawing.Color.Yellow;

doc.Save ("ChangeShapeStyle.docx") ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 113

Shadow Effect

The shadow effect is used to add additional depth and definition to the foreground objects from the background.
DsWord styles allow you to apply custom shadow effects defined in FormatScheme to your shape. Properties of
FormatScheme class define the style matrix for a theme applied to the shadow. To use a specific color for the shadow,
you can either set color directly in format scheme or you can use PlaceholderColor property which is used only if the
color of shadow in FormatScheme is set to None.

Apply Shadow Styles using Direct Colors

DsWord allows you to apply theme styles to the shape by directly embedding the color in the format scheme.

See the code below to apply shadow styles to a shape using direct colors:

C#

var fmtEffect = doc.Theme.FormatScheme.Effects.Add();
// set properties for the PresetShadow
fmtEffect.PresetShadow.Angle = 35f;

// set direct color to PresetShadow

fmtEffect.PresetShadow.Color.RGB = Color.Yellow;
fmtEffect.PresetShadow.Distance = 50;

fmtEffect.PresetShadow.Type = PresetShadowType.BackRightPerspectiveShadow;

var para = doc.Body.Paragraphs.Add();
var run = para.GetRange () .Runs.Add();
var shape = run.GetRange () .Shapes.Add() ;
shape.Fill.SolidFill.RGB = Color.Red;

// set shape style using object of FormatScheme
shape.Style.Effects.ThemeEffects = fmtEffect;

Apply Shadow Style using Placeholder Color

DsWord allows you to apply theme styles to the shape by referring to the external placeholders which are defined
explicitly. This is to be noted that multiple styles can share a single format scheme, or you can define individual
placeholders for each style.

See the code below to apply shadow styles to a shape using placeholder color:

C#

var fmtEffect = doc.Theme.FormatScheme.Effects.Add();

// set properties of PresetShadow
fmtEffect.PresetShadow.Angle = 35f;

// theme color is set to None, so this shadow will be colored by styles that use this
Effect using their PlaceholderColors.

fmtEffect.PresetShadow.Color.ThemeColor = ThemeColorId.None;
fmtEffect.PresetShadow.Distance = 50;

fmtEffect.PresetShadow.Type = PresetShadowType.BackRightPerspectiveShadow;

var para = doc.Body.Paragraphs.Add()

var run = para.GetRange () .Runs.Add();

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 114

var shape = run.GetRange () .Shapes.Add() ;

// set the PlaceholderColor
shape.Style.Effects.PlaceholderColor.RGB = Color.Yellow;

// set shape style using object of FormatScheme
shape.Style.Effects.ThemeEffects = fmtEffect;
shape.Fill.SolidFill.RGB Color.Red;

2 Note: When you change fill, line or shadow properties of a predefined themed style, it may affect other styles as
well because many themed style presets point to same fill, line and shadow properties.

Blur Effect

Blur effect refers to smoothing of images and its edges so that the image or a part of it appears out of focus. In

DsWord, you can apply blur effect to image directly or through a defined format. This section talks about format or
shape styles to apply this effect.

You can define a custom blur effect in FormatScheme of the shape and apply the effect through FormatScheme
properties which define style matrix of the theme.

C#

// Shape Blur - shapes style:

p = doc.Body.Paragraphs.Add() ;
p.Style.ParagraphFormat.Spacing.SpaceBefore = 30;

run = p.GetRange () .Runs.Add() ;

shape = run.GetRange () .Shapes.Add (100, 100, GeometryType.Star4d);
shape.Fill.Type = FillType.Solid;
shape.Fill.S0lidFill.RGB = Color.Yellow;
shape.Line.Width = 4;

shape.Line.Fill.S0olidFill.RGB = Color.Red;

// apply 7 point blur effect to the shape

var fmtEffect = doc.Theme.FormatScheme.Effects.Add();
fmtEffect.Blur.Radius = 7f;

//

shape.Style.Effects.ThemeEffects = fmtEffect;
p.GetRange () .Runs.Add ("Shape Blur - shapes style.",
doc.Styles[BuiltInStyleId.Strongl);

To view this sample code in action, see Blur Effect demo sample.

Reflection Effect

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/features/effects/blur-effect/word-cs

Document Solutions for Word

115

DsWord styles allow you to apply custom reflection effects defined in FormatScheme to your shape. Properties of
FormatScheme class define the style matrix for a theme applied to the reflection. You can also set effects directly in

the shape using Shape.Effects.Reflection. For more information, see Reflection Format.

The code below show how to apply custom reflection to a shape using shape styles:

C#

// Shape reflection - style effects:

p = doc.Body.Paragraphs.Add() ;
p.Style.ParagraphFormat.Spacing.SpaceBefore = 50;
run = p.GetRange () .Runs.Add() ;

shape = shape = run.GetRange () .Shapes.Add (100, 100, GeometryType.Heptagon);

shape.Fill.Type = FillType.Solid;

shape.Fill.S0lidFill.RGB = Color.PeachPuff;

shape.Line.Width = 4;

shape.Line.Fill.SolidFill.ThemeColor = ThemeColorId.Accentl;

// Apply tight touching reflection effect to the new effect record:
var fmtEffect = doc.Theme.FormatScheme.Effects.Add();
fmtEffect.ApplyBuiltInReflection(BuiltInReflectionId.TightTouching) ;
// Rpply new effect style to shape:

shape.Style.Effects.ThemeEffects = fmtEffect;

To view the code in action, see Reflection Effect demo sample.

Glow Effect

DsWord styles allow you to apply custom glow effects defined in FormatScheme to your shape. Properties of

FormatScheme class define the style matrix for a theme applied to the glow. To use a specific color for the glow, you
can either set color directly in format scheme or you can use PlaceholderColor property which is used only if the

color of glow in FormatScheme is set to None.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/features/effects/reflection-effect/word-cs

Document Solutions for Word 116

Apply Glow Styles using Direct Colors

DsWord allows you to apply theme styles to the shape by directly embedding the color in the format scheme.

The code below shows how to apply glow styles to a shape using direct color in the FormatScheme's effect:

C#

var shape = run.GetRange () .Shapes.Add (100, 100, GeometryType.Cloud);
shape.Fill.Type = FillType.Solid;

shape.Fill.SolidFill.ThemeColor = ThemeColorId.Accentl;

// apply 18 point accent 6 glow effect to the shape's style

var fmtEffect = doc.Theme.FormatScheme.Effects.Add();

fmtEffect.ApplyBuiltInGlow (BuiltInGlowId.Radiusl8Accent®6) ;
shape.Style.Effects.ThemeEffects = fmtEffect;

p.GetRange () .Runs.Add ("Shape Glow - shapes style - direct color in format scheme’s
effect.", doc.Styles[BuiltInStyleId.Strong]);

Apply Glow Styles using Placeholder Color

DsWord allows you to apply theme styles to the shape by referring to the external placeholders which are defined
explicitly. This is to be noted that multiple styles can share a single format scheme, or you can define individual
placeholders for each style.

The code below shows how to apply glow styles to a shape using placeholder color:

C#

Shape shape = run.GetRange () .Shapes.Add() ;
shape.Fill.Type = FillType.Solid;
shape.Fill.SolidFill.ThemeColor = ThemeColorId.Accentl;

var fmtEffect = doc.Theme.FormatScheme.Effects.Add();
fmtEffect.Glow.Color.ThemeColor = ThemeColorId.None;

// apply 18 point accent 6 glow effect to the shape's style
fmtEffect.Glow.Radius = 18f;
shape.Style.Effects.PlaceholderColor.ThemeColor = ThemeColorId.Accent6;
shape.Style.Effects.PlaceholderColor.Transparency = 0.6f;

shape.Style.Effects.ThemeEffects = fmtEffect;

To view the code in action, see Glow Effect demo sample.

SoftEdge Effect

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/features/effects/glow-effect/word-cs

Document Solutions for Word 117

In DsWord, you can apply SoftEdge effect to image directly or through a defined format. This section talks about
format or shape styles to apply this effect.

You can define a custom SoftEdge effect in FormatScheme of the shape and apply the effect through FormatScheme
properties which define style matrix of the theme.

C#

// Shape Soft Edge - shapes style:

Paragraph p = doc.Body.Paragraphs.Add() ;
p.Style.ParagraphFormat.Spacing.SpaceBefore = 30;

Run run = p.GetRange () .Runs.Add() ;

Shape shape = run.GetRange () .Shapes.Add (100, 100, GeometryType.Ellipse);
shape.Fill.Type = FillType.Solid;

shape.Fill.S0lidFill.RGB = Color.Yellow;

shape.Line.Width = 8;

shape.Line.Fill.SolidFill.RGB = Color.Red;

// apply 5 point soft edge effect to the style

var fmtEffect = doc.Theme.FormatScheme.Effects.Add();
fmtEffect.SoftEdge.Radius = 5f;

//

shape.Style.Effects.ThemeEffects = fmtEffect;

p.GetRange () .Runs.Add ("Shape Soft Edge - shapes style.",
doc.Styles[BuiltInStyleId.Strong]);

To view this sample code in action, see SoftEdge Effect demo sample.

FillOverlay Effect

DsWord styles allow you to apply custom FillOverlay effects defined in FormatScheme to your shape. Properties of
FormatScheme class define the style matrix for a theme applied to the FillOverlay. To use a specific color for the
FillOverlay, you can either set color directly in format scheme or you can use PlaceholderColor property which is used
only if the color of FillOverlay in FormatScheme is set to None.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/features/effects/SoftEdge-effect/word-cs

Document Solutions for Word 118

Apply FillOverlay Styles using Direct Colors

DsWord allows you to apply theme styles to the shape by directly embedding the color in the format scheme.

The code below shows how to apply FillOverlay styles to a shape using direct color in the FormatScheme's effect:

C#

// Shape FillOverlay - style effects, fixed color:

Paragraph p = doc.Body.Paragraphs.Add() ;
p.Style.ParagraphFormat.Spacing.SpaceBefore = 30;

Run run = p.GetRange () .Runs.Add() ;

run.GetRange () .Shapes.Add (100, 100, GeometryType.AccentCallout3);
shape.Fill.Type = FillType.Solid;

shape.Fill.S0lidFill.RGB = Color.LightBlue;

// apply solid fill overlay with another color to mix with the main fill
var fmtEffect = doc.Theme.FormatScheme.Effects.Add();

FillOverlay overlay = fmtEffect.FillOverlay;

overlay.BlendMode = BlendMode.Multiply;

overlay.Fill.Type = FillType.Solid;

overlay.Fill.SolidFill.RGB = Color.Yellow;
shape.Style.Effects.ThemeEffects = fmtEffect;
p.GetRange () .Runs.Add ("Shape FillOverlay - style effects, fixed color.",
doc.Styles[BuiltInStyleId.Strongl) ;

Shape shape

Apply FillOverlay Styles using Placeholder Color

DsWord allows you to apply theme styles to the shape by referring to the external placeholders which are defined
explicitly. This is to be noted that multiple styles can share a single format scheme, or you can define individual
placeholders for each style.

The code below shows how to apply FillOverlay styles to a shape using placeholder color:

C#

// Shape FillOverlay - style effects, fixed and placeholder color usage, pattern
color

// (BackColor uses fixed color, ForeColor uses placeholder color):

Paragraph p doc.Body.Paragraphs.Add () ;

p.Style.ParagraphFormat.Spacing.SpaceBefore = 30;

Run run = p.GetRange () .Runs.Add() ;

Shape shape = run.GetRange () .Shapes.Add (100, 100, GeometryType.CircularArrow) ;
shape.Fill.Type = FillType.Solid;

shape.Fill.S0lidFill.RGB = Color.LightBlue;

// Apply pattern fill overlay with another color to mix with the main fill:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 119

var fmtEffect = doc.Theme.FormatScheme.Effects.Add();

FillOverlay overlay = fmtEffect.FillOverlay;

overlay.BlendMode = BlendMode.Multiply;

//

var foFill = overlay.Fill;

foFill.Type = FillType.Pattern;

foFill.PatternFill.Type = PatternFillType.DashedHorizontal;
foFill.PatternFill.ForeColor.ThemeColor = ThemeColorId.None;
foFill.PatternFill.BackColor.ThemeColor = ThemeColorId.Accent6;

//

shape.Style.Effects.PlaceholderColor.ThemeColor = ThemeColorId.Accent3;
shape.Style.Effects.PlaceholderColor.Transparency = 0.6f;
shape.Style.Effects.ThemeEffects = fmtEffect;
p.GetRange () .Runs.Add ("Shape FillOverlay - style effects, fixed and placeholder color
usage, pattern color.", doc.Styles[BuiltInStyleId.Strong]):;

To view the code in action, see FillOverlay Effect demo sample.

3D Effect

DsWord styles allow you to apply custom 3D effects defined in FormatScheme to your shape. Properties of
FormatScheme class define the style matrix for a theme applied to the 3D effect. To use a specific color for the 3D
effect, you can either set color directly in format scheme or you can use PlaceholderColor property which is used
only if the color of 3D effect in FormatScheme is set to None. You can also set the 3D effect directly in the shape
using ThreeDFormat and ThreeDScene classes and the ApplyEffectsPreset method. For more information, see 3D
Format.

Direct Color 3D Effect Placeholder Color 3D Effect

Apply 3D Styles using Direct Colors

DsWord allows you to apply theme styles to the shape by directly embedding the color in the format scheme.

Refer to the following example code to add a direct color 3D effect:

C#

// Initialize GcWordDocument.

var doc = new GcWordDocument () ;

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/features/effects/filloverlay-effect/word-cs

Document Solutions for Word 120

// Add a shape to the document.

Paragraph p = doc.Body.Paragraphs.Add () ;

Run run = p.GetRange () .Runs.Add() ;

Shape shape = run.GetRange () .Shapes.Add() ;
shape.Fill.Type = FillType.Solid;
shape.Fill.SolidFill.ThemeColor = ThemeColorId.Accentl;

// Set the shape format.
var shapeFormat = shape.Effects.ThreeDFormat;

var schemeEffects = doc.MainDocument.Theme.FormatScheme.Effects.Add () ;
var schemeFormat = schemeEffects.ThreeDFormat;
var schemeScene = schemeEffects.ThreeDScene;

// Apply top bevel.
schemeFormat.TopBevel.Type = BevelType.Angle;
schemeFormat.TopBevel .Width = 18.5f;
schemeFormat.TopBevel.Height = 058.5f;

// Rpply bottom bevel.
schemeFormat.BottomBevel.Type = BevelType.ArtDeco;
schemeFormat.BottomBevel .Width = 11.5f;
schemeFormat.BottomBevel .Height = 21.5f;

// Set the depth of the shape.
schemeFormat.Depth.Width = 33.5f;
schemeFormat.Depth.Color.ThemeColor = ThemeColorId.Accent3;

// Add contour to the shape.
schemeFormat.Contour.Width = 43.5f;
schemeFormat.Contour.Color.RGB = Color.Blue;

// Set the shape material.

schemeFormat.Material = MaterialType.Metal;

// Set the DisnatceFromGround.
schemeFormat.DistanceFromGround = 48.5f;

// Set the 3D scene.

schemeScene.Camera.Preset = CameraPreset.OrthographicFront;
schemeScene.Lighting.Direction = LightRigDirection.Top;
schemeScene.Lighting.Type = LightRigType.ThreePoints;

// RApply the effect to the shape.
shape.Style.Effects.ThemeEffects = schemeEffects;

// Save the Word document.
doc.Save ("SampleShapeStyleThreeDEffectsDirectColors.docx") ;

Apply 3D Styles using Placeholder Color

DsWord allows you to apply theme styles to the shape by referring to the external placeholders which are defined

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 121

explicitly. This is to be noted that multiple styles can share a single format scheme, or you can define individual
placeholders for each style.

Refer to the following example code to add a placeholder color 3D effect:

C#

// Initialize GcWordDocument.
var doc = new GcWordDocument () ;

// Add a shape to the document.

Paragraph p = doc.Body.Paragraphs.Add() ;

Run run = p.GetRange () .Runs.Add() ;

Shape shape = run.GetRange () .Shapes.Add() ;
shape.Fill.Type = FillType.Solid;
shape.Fill.SolidFill.ThemeColor = ThemeColorId.Accentl;

// Set the shape format.

var shapeFormat = shape.Effects.ThreeDFormat;

var schemeEffects = doc.MainDocument.Theme.FormatScheme.Effects.Add () ;
var schemeFormat = schemeEffects.ThreeDFormat;

var schemeScene = schemeEffects.ThreeDScene;

// Bpply top bevel.
schemeFormat.TopBevel.Type = BevelType.Angle;
schemeFormat.TopBevel.Width = 18.5f;
schemeFormat.TopBevel.Height = 058.5f;

// RApply bottom bevel.
schemeFormat.BottomBevel.Type = BevelType.ArtDeco;
schemeFormat.BottomBevel .Width = 11.5f;
schemeFormat.BottomBevel .Height = 21.5f;

// Set the depth of the shape.
schemeFormat.Depth.Width = 33.5f;
schemeFormat.Depth.Color.ThemeColor = ThemeColorId.Accentl;

// Add contour to the shape.
schemeFormat.Contour.Width = 43.5f;

// Set ThemeColor to none. ThemeColor will be retrieved from the placeholder.
schemeFormat.Contour.Color.ThemeColor = ThemeColorId.None;

// Set the shape material.

schemeFormat.Material = MaterialType.Metal;

// Set the DisnatceFromGround.
schemeFormat.DistanceFromGround = 48.5f;

// Set the 3D scene.

schemeScene.Camera.Preset = CameraPreset.OrthographicFront;
schemeScene.Lighting.Direction = LightRigDirection.Top;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 122

schemeScene.Lighting.Type = LightRigType.ThreePoints;

// Set the placeholder color.
shape.Style.Effects.PlaceholderColor.ThemeColor = ThemeColorId.Accent6;

// BRpply the effect to the shape.
shape.Style.Effects.ThemeEffects = schemeEffects;

// Save the Word document.
doc.Save ("SampleShapeStyleThreeDEffectsPlaceholderColor.docx") ;

Limitation

DsWord does not support the export of 3D effects to PDF or images.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 123

Office Math

Office Math in a Word document is a combination of mathematical symbols or text. For example, A=rtrA2 can be converted
and written in a Word document as:

A =mr?

DsWord allows you to read, add, edit, and display Office Math content in a Word document using OMathParagraph

and OMath classes. OMathParagraph represents a paragraph that contains Office Math content, while OMath represents an
inline Office Math zone and can be included in an OMathParagraph or a regular paragraph. Also, you can add
OMathParagraph and OMath to a SimpleField, Hyperlink, BidirectionalOverride, and ControlContent in an inline content
control.

DsWord provides specialized classes such

as OMathBar, OMathBorderBox, OMathBox, OMathDelimiter, OMathEquationArray, OMathFraction, OMathFunction, etc. to
represent the various math structures inside an OMath zone. These classes are derived from the common abstract OMathStruct
base class. Each class implementation has its own strong structure of OMathElements. OMathElement represents an element
inside the OMathStruct class instance. You can add OMathElement only to OMathDelimiter and OMathEquationArray class
instances manually; in other OMathStruct implementations, their position is predefined.

Besides Office Math content, OMath and OMathElement classes can contain the following objects: SimpleField, Hyperlink, and
ContentControl. Also, these classes and OMathParagraph class can contain ContentMark and Run objects. When Run object is
inside the Office Math zone (in OMath or OMathElement), its new property IsOMathRun sets to true. In this case, the new
property OMathFormat became available for additional mathematical formatting through the OMathFormat class. The default
appearance and behavior of Office Math content are available with the new OMathOptions property in Settings class

through OMathOptions class.

You can access the Office Math content using OMathParagraphs, OMaths, OMathStructs, OMathElements
and OMathMatrixRows properties of RangeBase class.

Working with OMathElements

OMathElements allow you to create various complex equations with different structures using accent, bar, border-box, box,
delimiter, and so on. The following sections demonstrate the usage of such OMathElements.

Accent

An accent is a single Unicode symbol present over a base element. You can add an accent symbol to an equation
using AddAccent method of OMath class.

| e

Base Element Accent Character
Refer to the following example code to add an accent over a fraction:

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;
var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add accent to the equation.
var accent = om.AddAccent ("", "\u0308");

accent.Base.AddFraction("2", "5", OMathFractionType.Bar);

// Save the Word document.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 124

sampleDoc. Save ("Accent.docx") ;

Bar

A bar is a horizontal line present over or below a base element. You can add a bar to an equation using AddBar method of
OMath class. By default, the bar is added below the base element.

L1

%,
\-

Base Element
Refer to the following example code to add a bar over a function:

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;
var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add bar to the equation.

var bar = om.AddBar();
bar.Base.AddFunction ("cos", "2x");
bar.Position = OMathVerticalJustification.Top;

// Save the Word document.
sampleDoc.Save ("Bar.docx") ;

COS 2X

Border Box

A border box is a border present around a base element with four sides. You can add a border box to an equation
using AddBorderBox method of OMath class. By default, a box is drawn around the base element, but you can also add
strikethrough in horizontal, vertical, and diagonal directions.

Base Element
Refer to the following example code to add a border box around an equation:

C#

// Initialize GcWordDocument.

var sampleDoc = new GcWordDocument () ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 125

var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add borderbox to the equation.

var box = om.AddBorderBox ("24+2*");
box.Base.AddFraction ("3", "3", OMathFractionType.Bar);
box.Base.AddRun (" = 5");

// Save the Word document.
sampleDoc.Save ("BorderBox.docx") ;

2+ 2 > 5
* — —
3

Box

A box represents a box that groups components of an equation or other instance of mathematical text. You can add a box to
an equation using AddBox method of OMath class.

Base Element
Refer to the following example code to add two runs with a box element between them:

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;
var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add box to the equation.
om.AddRun ("a") ;

var box = om.AddBox ("==");
om.AddRun ("b") ;
box.IsOperatorEmulator = true;

// Save the Word document.
sampleDoc.Save ("Box.docx") ;

a ==

Delimiter
A delimiter is a mark or symbol that represents the beginning or end of separate elements of an equation with a designated

separator between each element. You can add a delimiter to an equation using AddDelimiter method of OMath class. By
default, the beginning and end characters will be parentheses, and the separator will be a pipe symbol.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 126

Left Bracket Char Base Element Separator Char Righf"Bracket Char
Refer to the following example code to add delimiters to an equation:

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;
var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add delimiter to the equation.
var delimiter = om.AddDelimiter (new string([] { "5", "7" }, "[", "1", "\\");

delimiter.Items.Add () .AddRadical ("n", "7");

// Save the Word document.
sampleDoc.Save ("Delimiter.docx") ;

[5\7\Vn|

Equation Array

An equation array is a one-dimensional vertical array consisting of one or more equations or expression elements. You can add
an equation array using AddEquationArray method of OMath class.

Refer to the following example code to add an equation array:

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;
var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add equation array.

var ea = om.AddEquationArray () ;

ea.ltems.Add () .AddDelimiter (new string[] { "x", "y", "z" });
ea.ltems.Add () .AddFraction ("n", "2", OMathFractionType.Skewed) ;

// Save the Word document.
sampleDoc.Save ("EquationArray.docx") ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 127

(xlylz)
"/

Fraction

A fraction consists of a numerator element and a denominator element separated by a fraction bar. You can add a fraction
using AddFraction method of OMath class.

Numerator Denominator Fraction Bar

Refer to the following example code to add a fraction:

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;
var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add fraction.

var fr = om.AddFraction();

var func = fr.Numerator.AddFunction("sin", "");
func.Argument.AddFraction("u", "3", OMathFractionType.Bar);
fr.Denominator.AddRadical ("e", "3");

// Save the Word document.
sampleDoc.Save ("Fraction.docx") ;

Function

A function consists of a function name element and an argument element. You can add a function using AddFunction method
of OMath class.

Function Name Function Argument

Refer to the following example code to add a function:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 128

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;
var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add function.
var f = om.AddFunction("cos"™, "");
f.Argument.AddFraction("a", "2", OMathFractionType.Bar);

// Save the Word document.
sampleDoc.Save ("Function.docx") ;

T

COS =
2

Group Character

A group character is a Unicode symbol present above or below the base element. You can add a group character
using AddGroupCharacter method of OMath class.

o

fffw'LH,

y
Base Element Grouping Character
Refer to the following example code to add a group character to the function:

C#

// Initialize GcWordDocument.

var sampleDoc = new GcWordDocument () ;
var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add group character.

var gc = om.AddGroupCharacter ("xyz", "\u23DE");

gc.Position = OMathVerticalJustification.Top;
gc.VerticalJdustification = OMathVerticalJustification.Bottom;

// Save the Word document.
sampleDoc.Save ("GroupCharacter.docx") ;

£
Xyz
Lower Limit

A lower limit is the lowest value of any value or expression. You can add a lower limit using AddLimitLower method of OMath
class.

bt
A

_.-'/ -
"

&
Base Element Limit Element

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 129

Refer to the following example code to add a lower limit to the function:

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;
var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add lower limit.
om.AddLimitLower ("abc", "z");

// Save the Word document.
sampleDoc.Save ("LowerLimit.docx") ;

abc
yd

Upper Limit

An upper limit is the highest value of any value or expression. You can add an upper limit using AddLimitUpper method of
OMath class.

e
.'zJ
-

Base Element Limit Element

Refer to the following example code to add an upper limit to the function:

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;
var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add upper limit.
om.AddLimitUpper ("abc", "vy");

// Save the Word document.
sampleDoc.Save ("UpperLimit.docx") ;

y
abc

Matrix

A matrix is a rectangular array of elements in one or more rows and columns. DsWord provides OMathMatrix class, which is a
special type of OMathStruct. OMathMatrix represents a math matrix where you can add or remove rows and columns
represented by OMathMatrixRow and OMathMatrixColumn, respectively. Each cell in OMathMatrix is OMathElement instance.
You can add a matrix using AddMatrix method of OMath class.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

A
Bt 0 n2
jAwS
[I L
g
T
f'/
I
W i
e

Cells Rows Columns
Refer to the following example code to add a matrix:

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;

var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add matrix.
om.AddMatrix (new int?[2, 2] { { 1, 2}, { 3, 4 } });

// Save the Word document.
sampleDoc.Save ("Matrix.docx") ;

1 2
3 4

N-Array

130

An N-Array consists of an n-ary operator character, a base element (or operand), and optional upper and lower limit elements.

You can add an N-Array using AddNary method of OMath class.

Operaturﬁhar Subscript Superscript Base Element
Refer to the following example code to add an N-Array:

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;
var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add N-Array.
om.AddNary ("xdx", "0", e, "[[[™);

// Save the Word document.
sampleDoc.Save ("Nary.docx") ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 131

Jﬂomxdx

Phantom

A phantom structure adds the spacing of the phantom base element without displaying that base and suppresses part of the
glyph for spacing considerations. You can add a phantom structure using AddPhantom method of OMath class.

Argument
Refer to the following example code to add a phantom structure:

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;
var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add phantom structure.

var del = om.AddDelimiter (null, "<'", ">",6 "'");

var ph = del.Items.Add () .AddPhantom("argument", false);
ph.Show = false;

// Save the Word document.
sampleDoc. Save ("Phantom.docx") ;

< >

Radical

A radical symbol denotes the square root or nth root, and it creates a radical expression comprising a radicand and a degree
element. You can add a radical using AddRadical method of OMath class.

Degree Radicand

Refer to the following example code to add a radical expression:

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;
var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add radical expression.

var radical = om.AddRadical();

radical.Degree.AddFraction ("2", "3", OMathFractionType.Skewed) ;
radical.Radicand.AddFunction ("cos", "2x");

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 132

// Save the Word document.
sampleDoc.Save ("Radical.docx") ;

2
X3\/ COS 2Xx

Subscript

A subscript is a character, such as a number or letter, placed slightly below the normal line. You can add a subscript
using AddSubscript method of OMath class.

//‘

Base Element Subscript

Refer to the following example code to add a subscript:

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;
var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add subscript.
var func = om.AddFunction("", "2x+1");
func.Name.AddSubscript ("log", "3");

// Save the Word document.
sampleDoc.Save ("Subscript.docx") ;

log; 2x + 1

Superscript

A superscript is a character, such as a number or letter, placed slightly above the normal line. You can add a superscript
using AddSuperscript method of OMath class.

E. W

Base Element Superscript
Refer to the following example code to add a superscript:

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;
var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add superscript.

var func = om.AddFunction();
func.Name.AddSuperscript ("cos", "2");
var frac = func.Argument.AddFraction();

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 133

frac.Numerator.AddRun ("7x") ;
frac.Denominator.AddRun ("2n") ;

// Save the Word document.
sampleDoc.Save ("Superscript.docx") ;

5 7x
COS* —
2T

PreSubSuperscript

A pre-sub-superscript structure consists of a base element, a reduced-size script element placed below and to the left, and a
reduced-size script element placed above and to the left. You can add a pre-sub-superscript structure
using AddPreSubSuperscript method of OMath class.

Subscript Superscript Bagé' Element
Refer to the following example code to add a pre-sub-superscript structure:

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;

var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;
// Add pre-sub-superscript structure.
var pss = om.AddPreSubSuperscript("", "-x", "2x");

pss.Base.AddRadical ("n", "").HideDegree = true;

// Save the Word document.

sampleDoc.Save ("PreSubSuperscript.docx") ;

2X

>

SubSuperscript

A SubSuperscript consists of a base element, a reduced-size script element placed below and to the right, and a reduced-size
script element placed above and to the right. You can add a SubSuperscript using AddSubSuperscript method of OMath class.

.-.._‘_..

Base Element Subscript Superscript
Refer to the following example code to add a SubSuperscript:

C#

// Initialize GcWordDocument.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 134

var sampleDoc = new GcWordDocument () ;

var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add SubSuperscript.
var subs = om.AddSubSuperscript("", "-x", "2x");
subs.Base.AddRadical ("n", "").HideDegree = true;

// Save the Word document.
sampleDoc.Save ("SubSuperscript.docx") ;

2x

Vn_,

Builtin Equations

You can add built-in equations supported by MS Word using Add method of RangeBase, OMathParagraph, OMath, and
OMathElement classes that accept OMathBuiltinEquation enumeration value identifying the desired equation.

Add Builtin Equation

1. Access Office Math paragraph collection using OMathParagraphs property of RangeBase class.
2. Add a builtin equation using Add method of OMathParagraphCollection class and pass the builtin equation as a
parameter by choosing the appropriate value from OMathBuiltinEquation enumeration .

C#

// Initialize GcWordDocument.
GcWordDocument doc = new GcWordDocument () ;

// Add an Office Math paragraph with a built-in area of a circle equation.
doc.Body.Paragraphs.Add () .GetRange () .OMathParagraphs.Add (OMathBuiltInEquation.AreaOfCircle);

// Save the Word document.
doc.Save ("AreaofCircleBuiltin.docx") ;

MathML Converter

You can convert Office Math content to MathML and vice versa using MathMLConverter class. Also, it allows you to insert
MathML directly into a RangeBase and converts the MathML to Office Math automatically.

1. Access the Office Math paragraph collection using OMathParagraphs property of RangeBase class and add Office
Math paragraph using Add method of OMathParagraphCollection class.

2. Implement a text reader to read from a string using StringReader class.

Create an XML reader to read MathML from the string using Create method of XmIReader class.

4. Create a MathML converter and add the content to OMathParagraph using FromMathML method of MathMLConverter
class.

w

C#

// Initialize GcWordDocument.
GcWordDocument doc = new GcWordDocument () ;

// Add an Office Math paragraph.
OMathParagraph oMathParagraph = doc.Body.Paragraphs.Add() .GetRange () .OMathParagraphs.Add() ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

// Create an XML reader from the MathML area of the circle string.
StringReader stringReader = new StringReader ("<mml:math
xmlns:mml=\"http://www.w3.0rg/1998/Math/MathML\"" +

" xmlns:m=\"http://schemas.openxmlformats.org/officeDocument/2006/math\">
<mml :mi>A</mml:mi><mml:mo>=</mml:mo>" +

"<mml :mi>n</mml :mi><mml:msup><mml:mrow><mml :mi>r</mml:mi></mml:mrow><mml :mrow>
<mml :mn>2</mml :mn></mml :mrow></mml :msup></mml :math>") ;
XmlReader xmlReader = XmlReader.Create (stringReader) ;

// Create a MathML converter.
MathMLConverter converter = new MathMLConverter () ;

// Add the MathML area of the circle.
converter.AddMathML (xmlReader, oMathParagraph) ;

// Save the Word document.
doc.Save ("AreaofCircleMathml.docx") ;

Limitation

Export of Office Math content to PDF or images is not yet supported.

© 2024 MESCIUS inc. All rights reserved.

135

Document Solutions for Word

Complex Equation Examples

136

The following example codes demonstrate various complex equations that can be added using Office Math APIs of

DsWord library:

Equation 1

nmwx niwx
flx)=ag + z (an cos—— + b, sinT)

n=1

C#

// Initialize GcWordDocument.
var doc = new GcWordDocument () ;

var om = doc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add f (x)=a0+ to the paragraph.
om.AddRun ("f") ;

// Add delimiter. It inserts (and) before and after its items.

om.AddDelimiter (new stringl[] { "x" });
om.AddRun ("=") ;

om.AddSubscript ("a", "0");

om.AddRun ("+") ;

// Add sum from 1 till infinity.
var nary = om.AddNary("", "n=1", "', "3");
nary.Grow = true;

// Add delimeters " ()".
var deli = nary.Base.AddDelimiter();
var item = deli.Items.Add();

// Add an cos nnx/L.
item.AddSubscript ("a", "n");

var func = item.AddFunction();
func.Name.AddRun ("cos") .OMathFormat.IsNormalText = true;
func.Argument.AddFraction ("nox", "L", null);

// Add + bn sin nnx/L.
item.AddRun ("+") ;
item.AddSubscript ("b", "n");

func = item.AddFunction("", "");

func.Name.AddRun ("sin") .OMathFormat.IsNormalText = true;
func.Argument.AddFraction ("nnox", "L", null);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

// Save the Word document.
doc.Save ("Equation.docx") ;

Equation 2

3x (Perinn{x] AYy(Time(y) = Happ}f{X.}']})

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;

var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add 3x.
om.AddRun ("3IAx") ;

// Add delimiter. It inserts (and) before and after its items.

var item = om.AddDelimiter().Items.Add():;

// Add equation.

item.AddRun ("Person") .OMathFormat.IsNormalText = true;
item.AddDelimiter (new string[] { "x" });

item.AddRun ("AVy");

item = item.AddDelimiter () .Items.Add();

item.AddRun ("Time") .OMathFormat.IsNormalText = true;
item.AddDelimiter (new string[] { "y" });
item.AddRun ("-") ;

item.AddRun ("Happy") .OMathFormat.IsNormalText = true;
item.AddDelimiter (new stringl[] { "x,y" });

// Save the Word document.
sampleDoc.Save ("Equation.docx") ;

Equation 3
1 1 _
sine +sinf = EEiHE{n: T 5) cosi{a +5)

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;

var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add equation.

© 2024 MESCIUS inc. All rights reserved.

137

Document Solutions for Word 138

var func = om.AddFunction("sin", "o");
func.Name.GetRange () .Runs.First.Font.Italic = false;
om.AddRun ("+£") ;

func = om.AddFunction("sin", "B");
func.Name.GetRange () .Runs.First.Font.Italic = false;
om.AddRun ("=2") ;

func = om.AddFunction("sin", "");
func.Name.GetRange () .Runs.First.Font.Italic = false;
func.Argument.AddFraction("1", "2", null);
func.Argument.AddDelimiter (new string[] { "oxp" });
func = om.AddFunction ("cos", "");
func.Name.GetRange () .Runs.First.Font.Italic = false;
func.Argument.AddFraction("1", "2", null);
func.Argument.AddDelimiter (new string[] { "oa+R" });

// Save the Word document.
sampleDoc.Save ("Equation.docx") ;

Equation 4

1 (™ e dt = .
Zv)=— — =1 J‘ e vrTt 4gy
Vil t—iv a

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;
var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add equation.
om.AddRun ("z2") ;

om.AddDelimiter (new stringl[] { "u" });
om.AddRun ("=") ;

var frac = om.AddFraction("1", "", null);
var radical = frac.Denominator.AddRadical () ;

radical.Radicand.AddRun ("") ;
radical.HideDegree = true;

var nary — om.AddNary("", u_oon, Hooll, Hj‘"),.
frac = nary.Base.AddFraction();
var superscript = frac.Numerator.AddSuperscript ("e", "");

superscript.Superscript.AddSuperscript ("-t", "2");
frac.Numerator.AddRun ("dt") ;
frac.Denominator.AddRun ("t-1i") ;
frac.Denominator.AddRun ("u") .Font.Bidi = true;
om.AddRun ("=1") ;

nary = om.AddNary ("", "0O", "e", "[™);

superscript = nary.Base.AddSuperscript("e", "-ut-");
superscript.Superscript.AddSuperscript ("t", "2");

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 139

superscript.Superscript.AddRun ("/4");
nary.Base.AddRun ("dt") ;

// Save the Word document.
sampleDoc.Save ("Equation.docx") ;

Equation 5

Vit) |=|0 cosRt —sinRt]|| V(D)

U(t) (1 0 0) U(o)
Wit) 0 sinRt cosRt W)

C#

// Initialize GcWordDocument.
var sampleDoc = new GcWordDocument () ;
var om = sampleDoc.Body.AddParagraph () .AddOMathParagraph () .AddOMath () ;

// Add first delimiter.
var delimiter = om.AddDelimiter () ;

var item = delimiter.Items.Add():;

// Add first matrix.
var matrix = item.AddMatrix (3, 1);

foreach (var column in matrix.Columns)

column.HorizontalAlignment = OMathHorizontalAlignment.Center;
matrix.Rows[0].Cells[0].AddRun ("U") ;
matrix.Rows[0].Cells[0] .AddDelimiter (new string([] { "t" }):
matrix.Rows[1l].Cells[0].AddRun ("V") ;
matrix.Rows[1l].Cells[0].AddDelimiter (new stringl[] { "t" });
matrix.Rows[2].Cells[0].AddRun ("W") ;
matrix.Rows[2].Cells[0] .AddDelimiter (new string([] { "t" }):

om.AddRun ("=") ;

// Add second delimiter.
delimiter = om.AddDelimiter ();
item = delimiter.Items.Add();

// Add second matrix.
matrix = item.AddMatrix (3, 3);
foreach (var column in matrix.Columns)
column.HorizontalAlignment = OMathHorizontalAlignment.Center;

matrix.Rows[0] .Cells[0].AddRun("1");
matrix.Rows[0].Cells[1l].AddRun("0") ;
0m");

matrix.Rows[0].Cells[2].AddRun ("0")

matrix.Rows[1l].Cells[0].AddRun("0") ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

matrix.Rows[1l].Cells
"Rt") .Name.GetRange (

[1] .AddFunction ("cos",
)
matrix.Rows[1l].Cells[2] .AddRun("-");
[2]
)

.Runs.First.Font.Italic = false;

matrix.Rows[1l].Cells .AddFunction("sin",

"Rt") .Name.GetRange () .Runs.First.Font.Italic = false;
matrix.Rows[2].Cells[0].AddRun("0") ;
matrix.Rows[2].Cells[1l].AddFunction("sin",

matrix.Rows[2] .Cells
"Rt") .Name.GetRange (

2] .AddFunction("cos",

[
[
"Rt") .Name.GetRange () .Runs.First.Font.Italic = false;
[
) .Runs.First.Font.Italic = false;

// Add third delimiter.
delimiter = om.AddDelimiter();
item = delimiter.Items.Add():;

// Add third matrix.
matrix = item.AddMatrix (3, 1);

foreach (var column in matrix.Columns)

column.HorizontalAlignment = OMathHorizontalAlignment.Center;

matrix.Rows[0] .Cells[0].AddRun ("U") ;

matrix.Rows[0].Cells[0].AddDelimiter (new string[] { "O0" });
matrix.Rows[1l].Cells[0].AddRun ("V");
matrix.Rows[1l].Cells[0] .AddDelimiter (new string([] { "O0" });
matrix.Rows[2] .Cells[0].AddRun ("W") ;
matrix.Rows[2].Cells[0] .AddDelimiter (new stringl[] { "O0" });

// Save the Word document.
sampleDoc.Save ("Equation.docx") ;

© 2024 MESCIUS inc. All rights reserved.

140

Document Solutions for Word 141

Links

Links are required to jump from one location to other location within the document or outside the document. In this
section, we will discuss about the following types of links:

® Hyperlink
® Bookmark

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 142

Hyperlink

DsWord allows you to add, modify, and delete hyperlinks in a document. In DsWord, hyperlink element is represented by
the Hyperlink class. You can add a hyperlink in a document using Add method of the HyperlinkCollection class. It can also be
modified using the Hyperlink class properties, and deleted using Delete method of the ContentObject class.

Doy ®-0 " Meadinks - Marosoft Word - o b
- e"l Hame Inciert Page Layout References RLahings Review Wiew L]
= .
] caton oo R W o e R Rt L 11k AsBbCeD: | AsBbceoe AaBbC -I}'a:-:u
J L = i &
Pt 4 (BT O o Ae([V A (B[S S| [rhems [rMesesa. neatingy . Change :mm-
Chpboard ™ Fort] Paragraph] Styles] Eting
B .r|h= ¥ i O TG .'Mn.l
Among other things, fields allow to insert hype ri Ctrl+Click to follow link Jlowing is a hyperink to a web
address. Click to go to www.google kom)
L]
E
. L
REt p/ v gogle com (D0&E . -] +
Add Hyperlink
To add a hyperlink in a document:
1. Access a section in a document where the hyperlink is to be added.
2. Add a paragraph to the section using Add method of the ParagraphCollection class.
3. Add a hyperlink to the paragraph using Add method of the HyperlinkCollection class.
C#
var section = doc.Body.Sections.First;
//Add the first paragraph
var p = section.GetRange () .Paragraphs.Add (
"Among other things, fields allow to insert hyperlinks into documents." +

" Following is a hyperlink to a web address. ");

//Add a hyperlink to it
Hyperlink linkl = p.GetRange () .Hyperlinks.Add (new Uri("http://www.google.com"),

nn
’

"Click to go to www.google.com.");
//Save the document

doc.Save ("AddHyperlink.docx") ;

Back to Top

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 143

Modify Hyperlink
To modify a hyperlink:

1. Access a hyperlink from the hyperlink collection using Hyperlinks property of the RangeBase class. For example, access the
first hyperlink of the collection.

2. Modify the address for the specified link using Address property of the Hyperlink class.

3. Modify the text content value for the link using Value property of the Text class.

C#

//Load the existing word document
doc.Load ("AddHyperlink.docx") ;

//Modify the hyperlink code

Hyperlink linkl =
doc.Body.Sections.First.GetRange () .Paragraphs.First.GetRange () .Hyperlinks.First;

linkl.Address = new Uri("http://developer.mescius.com");

linkl.GetRange () .Texts[0].Value = "Click to visit MESCIUS, Inc. website";

//Save the document
doc.Save ("ModifyHyperlink.docx") ;

Back to Top

Delete Hyperlink
To delete a hyperlink:

1. Access a hyperlink from the hyperlink collection using Hyperlinks property of the RangeBase class. For example, access
the first hyperlink of the collection.
2. Delete the field using the Delete method of the ContentObject class.

C#

//Load the existing word document
doc.Load ("AddHyperlink.docx") ;

//Delete hyperlink to bookmark
doc.Body.Sections.First.GetRange () .Paragraphs.First.GetRange () .Hyperlinks.First.Delete();

//Save the document

doc.Save ("DeleteHyperlink.docx") ;

Back to Top
Support for Malformed URI

To load a document containing malformed URI in DsWord, the URI needs to be rewritten in a valid manner.

DsWord provides MalformedUriRewriter property in GcWordDocument class which encapsulates two delegates namely,
OnLoadlInvalidUriHandler and OnSavelnvalidUriHandler which are called on loading malformed URI event or on saving any
URI from the document, respectively.

The DefaultMalformedUriRewriter class implements the IMalformedUriRewriter interface and provides the default rewriting
strategy for handling invalid URlIs.

You can also define any custom URI rewriter implementation which overrides the delegates and rewrites malformed URI as
defined in the custom implementation.

The below template document contains malformed URI and is loaded in DsWord after using MalformedUriRewriter property to
handle it. Refer to Report Templates to know more more about templates.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 144

MName: {{ds.name}}

mailto:{{ds.email}}

Company: {{ds.CO ¢ 1. Click to follow link

Email: {{ds.emaill}j

C#

const string templateDocFileName = @"example malformed mailto.docx";

public void DemoDefaultRewriter ()
{
var doc = new GcWordDocument () ;
try
{
Console.WritelLine ("Loading file...");
doc.Load (templateDocFileName) ;
}
catch (UriFormatException)
{
Console.WritelLine ("File contains malformed urls and cannot be loaded without handling such
urls.");

}

//apply malformed rewriter (default implementation).
Console.WriteLine ("Apply malformed rewriter (default implementation)...");

doc.MalformedUriRewriter = new DefaultMalformedUriRewriter () ;

Console.WritelLine ("Loading file...");
doc.Load (templateDocFileName) ;

var contacts = newl]

{

new{ name = "x y",company = "A company", email = @"xy@a company.com"},
new{ name = "a b",company = "B company", email = @"abGb.com"},
new{ name = "c d",company = "C company", email = @"cd@C company.com"},

}i

doc.DataTemplate.DataSources.Add ("ds", contacts);

Console.WriteLine ("Filling template...");
int 1 = 1;
doc.DataTemplate.BatchProcess (() =>

{
var fileName = String.Format ("gen{0}.docx", i++);
Console.WritelLine (string.Format ("Generated template file {0}", fileName));
doc.Save (Path.Combine (fileName)) ;

}

Back to Top

For more information on how to implement hyperlinks using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/basics/content/hyperlinks/code-cs

Document Solutions for Word 145

Bookmark

A bookmark marks a specific location in a document for referencing and assigns a name to that location so that the user
can easily navigate to that particular location. DsWord provides you Bookmark class which represents a bookmark range in
the content. Using DsWord, you can add bookmarks in a document with Add method of the BookmarkCollection class and
delete them using Delete method of the Bookmark class.

Oy -0)" MewLinks - Microsoft Word - 0O %
Lol

—-“'r Home Insert Page Layout Referenies Madings Review View Lol

j " catbn Boay MU IR SRl L R | haBbceDe | AaBbCeDx AaBbCt %. a

1 ¥
Paste 3 B 5 U -ahx x Aa-|%-A- EX AN = iy - = ||l THemal 9N Spac.. Headingl - E::“if Editing
s -

Chpboard "= Faonk . Parageaph i Etyles

|T_| l!-l-:-l-Sl:l.".'-l4l;l:-l'-=.l.'-l.:'l'.:l'.:l::-l:61.31.‘._:,,-”---!5---!5('5

A bookmark assignsa name to a specific location and marks it for future reference so that the usercan
eadily navigate to that particular location. Jumpto Bookmarkl at the end of the detument.

Sectionl: Test Paragraph
Sectionl: Test Paragraph
Sectionl: Test Paragraph
Sectionl: Test Paragraph
Sectionl: Test Paragragh
Sectionl: Test Paragraph
Sectionl: Test Paragraph
Sectlonl: Test Paragraph
Sectionl; Test PFaragraph
Sectionl: Test Paragraph

Sectionl: Test Paragraph

Page:1al2 | Woeds: 128 | <35 English fUnited States) PR .

Add Bookmark

To add a bookmark:

1. Define a bookmark.

2. Add a paragraph to be marked by a bookmark.

3. Apply bookmark to the paragraph by adding a bookmark to the bookmark collection using Add method of the
BookmarkCollection class.

4. Add a hyperlink that navigates to the bookmark location on clicking, using the Add method of
the HyperlinkCollection class.

C#

var section = doc.Body.Sections.First;

// Add the first paragraph

var p = section.GetRange () .Paragraphs.Add("A bookmark marks a specific location" +
" in a document for referencing and assigns a name to that location so that" +
" the user can easily navigate to that particular location.");

//Add a paragraph to the section
for (var pr = 1; pr <= 30; pr++)

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 146

section.GetRange () .Paragraphs.Add ("Sectionl: Test Paragraph");

//Define bookmark name
var bmk = "Bookmarkl";

// Add a paragraph
var pb = section.GetRange () .Paragraphs.Add ($"{bmk} points here.");

//Mark the paragraph with a bookmark
pb.GetRange () .Bookmarks.Add (bmk) ;

//Create hyperlink text to jump to the bookmark location (paragraph)
p.GetRange () .Runs.Add ("Jump to");

p.GetRange () .Hyperlinks.Add (bmk, $"{bmk}");
p.GetRange () .Runs.Add ("at the end of the document.");

//Save the document
doc.Save ("AddBookmark.docx") ;

Back to Top

Modify Bookmark

To modify a bookmark:

1. Access a bookmark to modify from the bookmarks collection using Bookmarks property of the RangeBase class. For
example, access the first bookmark.

2. Modify the bookmark name using Name property of the Bookmark class.

3. Update the bookmark name in the hyperlink created for the bookmark.

C#

doc.Load ("AddBookmark.docx") ;

//Modify the bookamrk name

var newBmk = "TestBookmark";

Bookmark bmark =
doc.Body.Sections.First.GetRange () .Paragraphs.Last.GetRange () .Bookmarks.First;

bmark.Name = newBmk;

//Update the bookmark name in the hyperlink created for the bookmark

Hyperlink hyperlink bookmark =
doc.Body.Sections.First.GetRange () .Paragraphs.First.GetRange () .Hyperlinks.First;

hyperlink bookmark.Anchor = newBmk;

hyperlink bookmark.GetRange () .Texts[0].Value = newBmk;

//Save the document
doc.Save ("ModifyBookmark.docx") ;

Back to Top

Delete Bookmark

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 147

To delete a bookmark, access the bookmark from the bookmark collection using Bookmarks property of the RangeBase
class and delete it using the Delete method.

C#

//Load the existing word document
doc.Load ("AddBookmark.docx") ;

//Delete bookmark
Bookmark bmark =

doc.Body.Sections.First.GetRange () .Paragraphs.Last.GetRange () .Bookmarks.First;
bmark.Delete () ;

//Delete hyperlink to bookmark
doc.Body.Sections.First.GetRange () .Paragraphs.First.GetRange () .Runs[1l].Delete();
doc.Body.Sections.First.GetRange () .Paragraphs.First.GetRange () .Hyperlinks.First.Delete ()
doc.Body.Sections.First.GetRange () .Paragraphs.First.GetRange () .Runs.Last.Delete () ;

//Save the document

doc.Save ("DeleteBookmark.docx") ;

Back to Top

For more information on how to implement bookmarks using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/

Document Solutions for Word 148

Lists

Lists can be used to format and arrange text in an organized way. The appearance of lists can be customized by
defining numbered, bulleted, and multilevel lists.

DsWord provides 21 built-in list templates to create lists in a document using the ListTemplate class. This class
represents a list template that defines the format of list including the type of bullet or numbering style applied to the
list. The Add method of the ListTemplateCollection class allows you to define and add list template to the collection of
list templates in a document. The list templates are applied to a sequence of paragraphs to convert them to a list,
where each paragraph serves as the list item. DsWord allows you to apply list formatting to the paragraphs using
properties of the ListFormat class. It also provides ListLevel class which represents single list level for bulleted or
numbered list. In addition, you can use BuiltInListTemplateld enumeration to use predefined list templates and
NumberStyle enumeration to specify the number style for a list.

O H9-0)+ Createlist - Microsoft Word - O *
= .
-j Home Insert Page Layout References Mailings Rewiew View Ll
B ibri - A | e | P ir——r |3 S +4

) celibriBocy 12 - A W[= - 4= - 3R EE B W | sasbcene| aaBboene AaBbC &%
Paste j B 7 U - abe x, x' Aa~ by . ﬁ -EEAB |:§'| Sty - - f Mormal | T No Spaci.. Headingl - g:‘:"ﬂﬁ Editing
- - -
Clipboard Font la Paragraph] Skyles s
I-I'I'I'I'g-'-:-.I-:-'I-';-'-I-'- IR N N TN NS T ERRN SRR = KR LN RN R - A st EJ

The list of bullets:

o Bulletitem1
I Mumbered item1: Nested item 1

o Bulletitem 2
Mumbered item 2: Nested item 1
fi. Numbered item 2: Nested item 2

o Bulletitem 3

i Numbered item 3: Nesteditem 1

Pagez1of 1 | Words: 44 g.’; English [United States)

Create List

To create list in a Word document:

1. Add a paragraph using the Add method.

2. Access the list templates collection using ListTemplates property of the DocumentBase class.

3. Add a sequence of paragraphs which will serve as the list items using Add method of the
ListTemplateCollection class.

4. Add paragraph part of the list using Add method of the paragraph collection for each item in the list.

5. Apply list template to all the paragraphs by using ListFormat property of the Paragraph class.

C#

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

//Define a ListTemplate for level 1 list items:
ListTemplate myListTemplate = doc.ListTemplates.Add (
BuiltInListTemplateId.BulletDefault, "myListTemplate");

//Define list templates for level 2 list items
ListTemplate mySubListlTemplate = doc.ListTemplates.Add (

149

BuiltInListTemplateId.NumberUppercaseRomanDot, "mySubListlTemplate");

ListTemplate mySubList2Template = doc.ListTemplates.Add (

BuiltInListTemplateId.NumberUppercaseRomanDot, "mySubList2Template");

ListTemplate mySubList3Template = doc.ListTemplates.Add (

BuiltInListTemplateId.NumberUppercaseRomanDot, "mySubList3Template");

ParagraphCollection pars = doc.Body.Sections.First.GetRange () .Paragraphs;

pars.Add("The list of bullets:");

//Add list items using Paragraph and set their list template and level number:

Paragraph pl = pars.Add("Bullet item 1");
pl.ListFormat.Template = myListTemplate;
pl.ListFormat.LevelNumber = 1;

Paragraph plsl = pars.Add("Numbered item 1: Nested item 1");
plsl.ListFormat.Template = mySubListlTemplate;
plsl.ListFormat.LevelNumber = 2;

Paragraph p2 = pars.Add("Bullet item 2");
p2.ListFormat.Template = myListTemplate;
p2.ListFormat.LevelNumber = 1;

Paragraph p2sl = pars.Add("Numbered item 2: Nested item 1");
p2sl.ListFormat.Template = mySubList2Template;
p2sl.ListFormat.LevelNumber = 2;

Paragraph p2s2 = pars.Add("Numbered item 2: Nested item 2");
p2s2.ListFormat.Template = mySubList2Template;
p2s2.ListFormat.LevelNumber = 2;

Paragraph p3 = pars.Add("Bullet item 3");
p3.ListFormat.Template = myListTemplate;
p3.ListFormat.LevelNumber = 1;

Paragraph p3sl = pars.Add("Numbered item 3: Nested item 1");
p3sl.ListFormat.Template = mySubList3Template;
p3sl.ListFormat.LevelNumber = 2;

//Save the document
doc.Save ("CreateList.docx") ;

Back to Top
Modify List

To modify a list:

1. Access the list templates collection using ListTemplates property of the DocumentBase class.
2. Add a paragraph to the list using the Add method. This adds another item in the list.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 150

3. Apply list template to all the paragraph using ListFormat property of the Paragraph class.
4. Set the list level for the new paragraph, if required. For example, set the level number to 2, so that it appears as
a nested item in the list.

C#

doc.Load ("List.docx");

//Access the list template collection
ListTemplate myListTemplate = doc.ListTemplates|["myListTemplate"];

//Add a paragraph to the list
Paragraph p4=doc.Body.Sections.First.GetRange () .Paragraphs.Add ("Bullet item 4");
p4.ListFormat.Template = myListTemplate;

//Set the bullet level
p4.ListFormat.LevelNumber = 2;

//Save the document
doc.Save ("ModifyList.docx");

Back to Top

Delete List

To delete a list, remove list formatting from the last paragraph of the document using ClearFormatting method of the
ListFormat class.

C#

doc.Load ("List.docx");

//Access the list template collection
ListTemplate myListTemplate = doc.ListTemplates|["myListTemplate"];

//Remove list formatting from all the paragraphs serving as the list items
for (int p = 1; p < doc.Body.Paragraphs.Count; p++)
doc.Body.Paragraphs|[p] .ListFormat.ClearFormatting () ;

//Save the document
doc.Save ("DeleteList.docx") ;

Back to Top

Restart List

You can also restart a list by using the RestartList method of Paragraph class. The method provides an

optional startNumberingValue parameter which defines the new numerical value to be used as the restart value
in the list. If the list is alphabetical, this numerical value defines the index of the letter in the alphabet to be used as
the restart value in the list. For example, if the numerical value is 8:

® A numbered list will restart from 8
® An alphabetical list will restart from 'h' (8th letter)

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 151

If startNumberingValue parameter is null, the list will restart from the first number or first letter, whichever
is applicable.

The screenshot below shows a document (List.docx) that contains a multi-level list, and the same document after
being updated using the following code:

Input Output
A A1 A A1
B B-1 B. B-1
C.oc-1 C. C1
a. Sub-a-1 a. Sub-a-1
b.1 sub-b-1 h.| Sub-b-1
c. | sub-c-1 i. | Sub-c-1
d.| Sub-d-1 J- | Sub-d-1
D. D-1 D. D1
E. E-1 E. E-1
F. F-1 F. F1
a. Sub-a-2 a. Sub-a-2
b. Sub-b-2 b. Sub-b-2
c. Sub-c-2 c. Sub-c-2
d. Sub-d-2 d. Sub-d-2
G G1 G. G-1
C#
var doc = new GcWordDocument () ;

//Load document containing list
doc.Load ("List.docx") ;

//Restart 5th paragraph of the list and switch its list element to 8th alphabet
letter (h)

doc.Body.Paragraphs[4] .RestartList (8);

//Save the document
doc.Save ("RestartList.docx") ;

= Note: The following behavior in DsWord differs from MS Word:

e DsWord allows you to restart last items of lists unlike MS Word.
® DsWord does not allow you to restart single-level lists as multilevel-lists unlike MS Word.

Back to Top

For more information on how to implement lists using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/basics/content/bullets/code-cs

Document Solutions for Word 152

Paragraph

In DsWord, a paragraph is represented by the Paragraph class. This class allows you to work with the paragraph
element in a Word document. DsWord provides ParagraphFormat class which contains all the formatting properties
for a paragraph, such as alignment, indentation, shading, tab stops, etc.

Paragraph
Indentation

Line spacing

Borders

Background shading
Tab stops

Paragraph numbering
Paragraph styling

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 153

Paragraph

DsWord allows you to add, modify, and delete a paragraph from a Word document. It allows you to add a

paragraph to the paragraph collection using Add method of the ParagraphCollection class, modify it using
the Paragraphs property which accesses the paragraph collection, and delete it using the Delete method of
the ContentObject class.

Add Paragraph

To add a paragraph to a document:

1. Access the paragraph collection using Paragraphs property of the RangeBase class.
2. Add a paragraph using Add method of the ParagraphCollection class.

C#

//Add first paragraph
doc.Body.Sections.First.GetRange () .Paragraphs.Add ("Hello, World!");

//Add another paragraph
doc.Body.Sections.First.GetRange () .Paragraphs.Add ("Document Solutions");

//Save the document
doc.Save ("AddParagraph.docx") ;

Back to Top

Modify Paragraph
To modify a paragraph in a document:

1. Access the paragraph you want to modify from the paragraph collection using Paragraphs property of the
RangeBase class. For example, access the first paragraph using First property of the ParagraphCollection class.

2. Modify the Paragraph class properties. For example, use the Format property for accessing the paragraph
formatting properties such as the Alignment property to set the alignment of the paragraph.

C#

doc.Load ("AddParagraph.docx") ;

//Modify settings of the first paragraph
doc.Body.Sections.First.GetRange () .Paragraphs.First.Format.Alignment =
ParagraphAlignment.Center;

//Save the document

doc.Save ("ModifyParagraph.docx") ;
Back to Top

Delete Paragraph

To delete a paragraph from a document, access a paragraph from the paragraph collection using the Paragraphs
property and delete it using Delete method of the ContentObject class.

C#

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 154

doc.Load ("AddParagraph.docx") ;
//Delete the last paragraph

doc.Body.Sections.First.GetRange () .Paragraphs.Last.Delete();

//Save the document

doc.Save ("DeleteParagraph.docx") ;

Back to Top

For more information on how to work with paragraphs using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/

Document Solutions for Word 155

Indentation

DsWord allows you to specify the set of indentation properties for a paragraph using the Indentation class which can be
accessed using Indentation property of the ParagraphFormat class.

Get Indents

To get the indents of a paragraph:

Access a paragraph from the paragraph collection using Paragraphs property of the RangeBase class.

. Access the paragraph formatting properties using Format property of the Paragraph class.

. Get the indentation properties applied to the paragraph using Indentation property of the ParagraphFormat class.
Get indentation property. For example, get the value of the first line indent of the paragraph using FirstLinelndent
property of the Indentation class.

5. Display the indent value on the console.

C#

Awp o

//Get indents
Console.WriteLine ("Indent: " +

doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.Indentation.FirstLineIndent);

Back to Top

Set Indents

To set the indents of a paragraph:

. Access a paragraph from the paragraph collection using Paragraphs property of the RangeBase class.

. Access the paragraph formatting properties using Format property of the Paragraph class.

Get the indentation properties applied to the paragraph using Indentation property of the ParagraphFormat class.
. Set indentation property. For example, set the value of the first line indent of the paragraph using FirstLinelndent
property of the Indentation class.

C#

AW o

//Set indents

doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.Indentation.FirstLineIndent =
20;

Back to Top

For more information on how to implement paragraph indentation using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/

Document Solutions for Word 156

Line Spacing

DsWord allows you to specify line spacing for a paragraph using LineSpacing property of the Spacing class which can
be accessed using Spacing property of the ParagraphFormat class.

Get Line Spacing

To get the line spacing of a paragraph:

1. Access a paragraph from the paragraph collection using Paragraphs property of the RangeBase class.
2. Access the paragraph formatting properties using Format property of the Paragraph class.
3. Get the spacing properties applied to the paragraph using Spacing property of the ParagraphFormat class.
4. Get the value of the line spacing for the paragraph using LineSpacing property of the Spacing class.
5. Display the line spacing value on the console.
C#
//Get line spacing
Console.WriteLine ("Line spacing:" +
doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.Spacing.LineSpacing);
Back to Top

Set Line Spacing

To set the line spacing of a paragraph:

1. Access a paragraph from the paragraph collection using Paragraphs property of the RangeBase class.

2. Access the paragraph formatting properties using Format property of the Paragraph class.

3. Get the spacing properties applied to the paragraph using Spacing property of the ParagraphFormat class.

4. Set the line spacing rule using LineSpacingRule property of the Spacing class.

5. Set the value of the line spacing for the paragraph using LineSpacing property of the Spacing class.
C#
//Set line spacing
doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.Spacing.LineSpacingRule

LineSpacingRule.Exact;
doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.Spacing.LineSpacing =
30;
Back to Top

For more information on how to implement line spacing using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/

Document Solutions for Word 157

Borders

DsWord allows you to specify the border properties for a paragraph using the Border class which can be accessed
using Borders property of the ParagraphFormat class.

Get Borders

To get the borders of a paragraph:

1. Access a paragraph from the paragraph collection using Paragraphs property of the RangeBase class.

2. Access the paragraph formatting properties using Format property of the Paragraph class.

3. Get border collection of the paragraph using Borders property of the ParagraphFormat class.

4. Get the left and right borders using Left and Right properties of the BorderCollection class respectively.

5. Get the border style using LineStyle property of the Border class.

6. Get the border color using Color property of the Border class.

7. Display the left and right border style and color on the console.
C#
//Get borders
LineStyle styleleft =
doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.Borders.Left.LineStyle;
LineStyle styleRight =
doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.Borders.Right.LineStyle;
Color colorlLeft =
doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.Borders.Left.Color.RGB;
Color colorRight =
doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.Borders.Right.Color.RGB;
Console.WriteLine ("Left Border: " + styleLeft + " " + colorlLeft);
Console.WritelLine ("Right Border: " + styleRight + " " + colorRight);

Back to Top

Set Borders

To set the borders of a paragraph:

Access a paragraph from the paragraph collection using Paragraphs property of the RangeBase class.
Access the paragraph formatting properties using Format property of the Paragraph class.

Get border collection of the paragraph using Borders property of the ParagraphFormat class.

Get the left and right borders using Left and Right properties of the BorderCollection class respectively.
Set the border style using LineStyle property of the Border class.

Set the border color using Color property of the Border class.

C#

//Set borders
doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.Borders.Left.Color.RGB
Color.Red;
doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.Borders.Left.LineStyle
LineStyle.ChainLink;
doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.Borders.Right.Color.RGB

SOk wn =

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 158

= Color.Yellow;
doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.Borders.Right.LineStyle

LineStyle.ChainLink;

Back to Top

For more information on how to implement paragraph borders using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/

Document Solutions for Word 159

Background Shading

DsWord allows you to specify the background shading for a paragraph using BackgroundPatternColor property of the Shading class
which can be accessed using Shading property of the ParagraphFormat class.

Get Shading

To get the shading:

. Access a paragraph from the paragraph collection using Paragraphs property of the RangeBase class.

. Access the paragraph formatting properties using Format property of the Paragraph class.

. Access the shading formatting for the paragraph using Shading property of the ParagraphFormat class.
. Get shading property. For example, get the shading texture using Texture property of the Shading class.
. Get the background color using BackgroundPatternColor property of the Shading class.

. Display the shading pattern and color on the console.

C#

o h wWwN =

//Get shading

TexturePattern texture =
doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.Shading.Texture;

Color shading=

doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.Shading.BackgroundPatternColor.RGB;
Console.WritelLine ("Shading Pattern: " + texture + "\n Shading Color: " + shading);

Back to Top

Set Shading

To set the shading:

. Access a paragraph from the paragraph collection using Paragraphs property of the RangeBase class.

. Access the paragraph formatting properties using Format property of the Paragraph class.

. Access the shading formatting for the paragraph using Shading property of the ParagraphFormat class.

. Set a shading property. For example, set the shading texture using Texture property of the Shading class.
. Set the background color using BackgroundPatternColor property of the Shading class.

C#

U N wn =

//Set shading

doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.Shading.Texture =
TexturePattern.Percentlb;

doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.Shading.BackgroundPatternColor.RGB

Color.LightPink;

Back to Top

For more information on how to implement background shading using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/

Document Solutions for Word 160

Tab Stops

Tab stops are used in Word documents to enable text alignment by pressing the Tab key from the keyboard. There
are generally five types of tab stops, namely, left, right, center, decimal, and bar tab.

DsWord allows you to specify tab stop properties for a paragraph using the TabStop class which can be accessed
using TabStops property of the ParagraphFormat class. It supports all the five types of tab stops which can be set
using Alignment property of the TabStop class. This property takes value from the TabStopAlignment enumeration.

Get Tab Stops

To get the tab stops:

Access a paragraph from the paragraph collection using Paragraphs property of the RangeBase class.
Access the paragraph formatting properties using Format property of the Paragraph class.
Get the tab stop properties applied to the paragraph using TabStops property of the ParagraphFormat class.

Get tab stop property. For example, get the position of the tab stop in points using Position property of the
TabStop class.

5. Display the indent value on the console.
C#

Mwn =

//Get tab stops
Console.WriteLine ("Tab Stop: "+

doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.TabStops[0] .Position);

Back to Top

Set Tab Stops

To set the tab stops:

1. Access a paragraph from the paragraph collection using Paragraphs property of the RangeBase class.

2. Access the paragraph formatting properties using Format property of the Paragraph class.

3. Get the tab stop properties applied to the paragraph using TabStops property of the ParagraphFormat class.
4. Add or replace the tab stop in the collection using Add method of the TabStopCollection class.

C#

//Set tab stops

doc.Body.Sections.First.GetRange () .Paragraphs.Last.Format.TabStops.Add (20,
TabStopAlignment.Bar) ;

Back to Top

For more information on how to implement tab stops using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/

Document Solutions for Word 161

Paragraph Numbering

DsWord allows you to specify paragraph numbering using the ListTemplate class which can be accessed
using ListTemplates property of the DocumentBase class.

Get Paragraph Numbering

To get the paragraph numbering:

Access a paragraph from the paragraph collection using Paragraphs property of the RangeBase class.
Get the list formatting specified for the paragraph using ListFormat property of the Paragraph class.
Access list template of the paragraph using Template property of the ListFormat class.

Get the name of the list template using Name property of the ListTemplate class.

Display the paragraph numbering on the console.

C#

uhkhwn =

//Get paragraph numbering
ParagraphCollection pars = doc.Body.Sections.First.GetRange () .Paragraphs;
Console.WriteLine ("Numbering template for the first paragraph: " +

pars[0] .ListFormat.Template.Name) ;
Back to Top

Set Paragraph Numbering

To set the paragraph numbering:

1. Access the collection of list templates using ListTemplates property of the GcWordDocument class.

2. Add a new list template to the collection of list templates using Add method of the ListTemplateCollection
class.

Access a paragraph from the paragraph collection using Paragraphs property of the RangeBase class.

Get the list formatting specified for the paragraph using ListFormat property of the Paragraph class.

5. Set list template of the paragraph using Template property of the ListFormat class.

C#

> w

//Set paragraph numbering

ParagraphCollection pars = doc.Body.Sections.First.GetRange () .Paragraphs;

// A ListTemplate is used to assign ListFormat/numbering to paragraphs

ListTemplate myListTemplate = doc.ListTemplates.Add (
BuiltInListTemplateId.NumberArabicParenthesis, "myListTemplate");

//Set the ListFormat for the paragraphs

Paragraph pl = pars[0];

pl.ListFormat.Template = myListTemplate;

Paragraph p2 = pars[l];

p2.ListFormat.Template = myListTemplate;

Back to Top

For more information on how to implement paragraph numbering using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/

Document Solutions for Word 162

Paragraph Styling

DsWord allows you to define a style using Style class which can be accessed using Styles property of the Run class. It
allows you to apply the defined style to a paragraph using Style property of the Paragraph class.

Set Paragraph Style

To set the paragraph style:

1. Define a new style using the Style class of type Paragraph using the StyleType enumeration and add it to the
style collection using Add method of the StyleCollection class.

2. Get the character formatting of the paragraph using Font property of the Style class.

3. Set the character formatting using the FontBase class properties. For example, set the name of the font using
the Name property and format the font as bold and italics using the Bold and Italic properties respectively.

4. Apply the defined style on the paragraph using Style property of the Paragraph class.

C#

//Add
Style

sPara.
sPara.
sPara.

style to the first paragraph
sPara = doc.Styles.Add ("ParaStyle", StyleType.Paragraph):;

Font.Name = "Times New Roman";
Font.Bold = true;
Font.Italic = true;

doc.Body.Sections.First.GetRange () .Paragraphs.Last.Style = sPara;

Back to Top

For more information on how to implement paragraph styling using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/

Document Solutions for Word 163

Range Objects

A Range object represents an arbitrary contiguous range of a document body. It is used to identify specific portions of
a document. DsWord provides the Range class which represents a contiguous area of content objects in a document.
This class is inherited from the RangeBase class which is the base class for range and body that allows manipulation of
content in a document. The RangeBase class provides GetPersistentRange method which allows you to access the
Range objects.

Access Range of Objects in a Document

To access a range of a content object in a document, use GetPersistentRange method of the RangeBase class. For
example, access the range starting from the first paragraph to the end of the second paragraph in a document.

C#

//Load the existing word document
doc.Load ("TestRange.docx") ;

//Get Range which starts from the first paragraph and ends at the second paragraph
Range paraRange = doc.Body.GetPersistentRange (doc.Body.Paragraphs.First,
doc.Body.Paragraphs[1l]);

Back to Top

Access all Content within the Range Objects

To access all content within the range objects:

1. Get the range of a content object using GetPersistentRange method of the RangeBase class. For example, get
the paragraph range starting from the first paragraph to the end of the second paragraph.
2. Display all the content objects within the accessed range on the console.

C#

//Load the existing word document
doc.Load ("TestRange.docx") ;

//Get Range which starts from the first paragraph and ends at the second
paragraph

Range paraRange = doc.Body.GetPersistentRange (doc.Body.Paragraphs.First,
doc.Body.Paragraphs[1l]);

//Get all the content objects in the range
Console.WriteLine ("List of all the content objects contained in the range \n");
for (int 1 = 0; 1 < paraRange.Count; i++)

{

Console.WriteLine (paraRange[i] + "\n");

Back to Top

Insert Objects Before or After Range Objects

To insert objects before or after range objects:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 164

1. Get the range of a content object using GetPersistentRange method of the RangeBase class. For example, get
the paragraph range starting from the first paragraph to the end of the second paragraph.

2. Insert an object before or after the range. For example, create and insert a table after the paragraph
using Insert method of the TableCollection class.

C#

//Load the existing word document
doc.Load ("TestRange.docx") ;

//Get Range which starts from the first paragraph and ends at the second
paragraph

Range paraRange = doc.Body.GetPersistentRange (doc.Body.Paragraphs.First,
doc.Body.Paragraphs[1l]);

//Insert bookamrk before the range

paraRange.Bookmarks.Insert ("Bookmarkl", RangeLocation.Before);

//Insert table after the range

string[][] tableContent = new string[][] {
new stringfl]{"O"™, "1™, "2", "3"} ,
new string[]{"4"™, "5", "e6", "7"}
new string[]{"8"™, "9", "10", "11"}

}i

paraRange.Tables.Insert (tableContent, InsertLocation.After);

//Save the document with the changes
doc.Save ("NewTestRange.docx") ;

Back to Top

Remove shapes and drawing objects from a document

To remove shapes and drawing objects from a document:

1. Access the unknown object collection from the document body using Unknowns property of the RangeBase
class.
2. Access the shapes and delete them from the document using Delete method of the ContentObject class.

C#

//Load the existing word document
doc.Load ("TestRange.docx") ;

//Get range which starts from the first paragraph and ends at the second
paragraph

Range pictureRange = doc.Body.GetPersistentRange (doc.Body.Pictures.First,
doc.Body.Paragraphs[1l]);

//Delete the last picture in the range
pictureRange.Pictures.First.Delete () ;

//Access the unknown object collection
UnknownContentCollection unknowns = doc.Body.Unknowns;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 165

Console.WriteLine ("\n " + unknowns.Count.ToString()):;
for (int i = unknowns.Count - 1; i >= 0; i--)
{
if (unknowns[i].OuterXml.ToString().Contains("Oval 1") ||

unknowns [i] .OuterXml.ToString () .Contains ("Isosceles Triangle 2"))

//Delete the two shapes that exist in the document
unknowns [0] .Delete () ;

//Save the document with the changes
doc.Save ("RemoveRange.docx") ;

Back to Top

Enumerate Content Objects in a Range

In DsWord, there are two types of range enumerators which differ on the basis of range of content objects:

® The inner collection enumerator includes only those content objects which start and/or end inside the range.
These can be enumerated by using GetlnnerCollection method of RangeBase class.

® The default range enumerator includes content objects lying in the inner collection range as well as those
which start before the range and end after the range.

To enumerate content objects with default and inner collection enumerator:

C#

GcWordDocument doc = new GcWordDocument () ;

Paragraph para = doc.Body.Paragraphs.Add() ;

Run run = para.GetRange () .Runs.Add ("xxx") ;

Shape shape = run.GetRange () .Shapes.Add() ;

TextFrame frame = shape.AddTextFrame () ;

Range frameRange = frame.GetRange();

frameRange.Paragraphs.Add ("yyy") ;

//default enumerator

int count = frameRange.Runs.Count; // includes parent run "xxx" and "yyy" frame run
//inner collection enumerator

int innerCount = frameRange.GetInnerCollection<Run>().Count; // includes only "yyy"
frame run

To enumerate content objects in a parent-child relationship, you can use GetChildren method of ContentObject class.
It returns the content objects directly related to a parent.

C#

var doc = new GcWordDocument () ;

var para = doc.Body.Paragraphs.Add("x");

var shape = para.GetRange () .Runs.First.GetRange () .Shapes.Add()
shape.AddTextFrame ("textframe") ;

int count = para.GetRange () .Runs.Count; // includes "x" and Shape run
int childCount = para.GetChildren<Run> () .Count; // includes Shape run

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 166

Limitation
The GetChildren<T> method enumerates only ContentObjects and not ContentRanges or its derived classes such as

Bookmark, Comment, EditableRange, ComplexField.

For more information on how to work with range objects using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/

Document Solutions for Word 167

Sections

Sections in a word document allows you to insert, modify, remove sections and get and set section properties. A
document can be divided into sections by inserting a section which creates a unique page layout for pages in that
particular section. For instance, to create a portion of document with landscape orientation while leaving the rest as
default portrait mode, insert a section before and after that landscape portion.

In DsWord, sections of the document are represented by the Section class which allows you to access section element
in the body of a document. The Section objects are immediate children of the Document's body and can be accessed
via the Sections property.

You can add sections to a document using AddSectionBreak method of the Paragraph class. This method accepts the
section break type as a parameter, which can be passed using the SectionStart enumeration. The default value of this
parameter is set to "NewPage", so invoking this method without a parameter inserts a section break of type new page
in a document. However, the type of section break inserted can be altered by passing in appropriate value from the
SectionStart enum. This enumeration has the following values:

Continuous: Starts a new section on the same page.
NewPage: Starts a new section from new page.
NewColumn: Starts a new section from new column.
EvenPage: Starts a new section from the next even page.
OddPage: Starts a new section from the next odd page.

|l."3. W-0 Achftection - Micraset Woid
S5 i | et Peptlieid Refesootr Malingi Rodew Yiew w
- = = = | Firad ™
 caea oy [- 1K |[) [3= = 1= = A [aaseceo] assbcene maBbC: Asebce AR A B :
| J B f D -daw o -%-A- /BEAN|E| -~ fhamal | THelpasi_ Headng | Hesdng 2 Tabie . ﬂw\::‘::l_l l:sma- I
| {higboud "= Fant - Patagraps . Tyles = Bditng |

'I.'l'a.l :I.I 2 : 1 Id E l\.. ¥ I| I'\l .:r :.‘ 12 I:: 1 .rl [..‘l + : 7 -r: Sy 4RI ﬁ

=

A
&

Sietian 1., Thi i thie T paragraph af this dasimaal.
Soctian 1. This i this seccsd paragraph ol this dacumast.

Section L This i the third paragraph of the documant.

-h-pr.mu ot 53 | 30 Englsh fiedted Sustes .Cll-:“-i-}-.

Insert Section

To insert a section in a document:

1. Create a new Word document using an instance of the GcWordDocument class.
2. Access the first section of the document.
3. Change the default page margins using Margin property of the PageSetup class.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 168

4. Add paragraphs to the section using the Add method of ParagraphCollection class.
5. Add a new section in the document using AddSectionBreak method of the Paragraph class.
6. Set orientation of the new section using Orientation property and add paragraphs to it.

C#
//Create a document
GcWordDocument doc = new GcWordDocument () ;

//Acess the first section available by default
Section secl = doc.Body.Sections.First;

// Change default margins

secl.PageSetup.Margin.Left = secl.PageSetup.Margin.Right

secl.PageSetup.Margin.Top = secl.PageSetup.Margin.Bottom 36;

//Add paragraphs to the first section

ParagraphCollection parsl = secl.GetRange () .Paragraphs;
parsl.Add("Section 1. This is the first paragraph of the document.");
parsl.Add ("Section 1. This is the second paragraph of the document.");
parsl.Add("Section 1. This is the third paragraph of the document.");

//Add another section by inserting a section break
Section sec2 = parsl.Last.AddSectionBreak();

// Change page orientation for the second section
sec2.PageSetup.Size.Orientation = PageOrientation.Landscape;

//Add paragraphs in the second section
ParagraphCollection pars2 = sec2.GetRange () .Paragraphs;

pars2.Add ("Section 2. This is the first paragraph of second section.");
pars2.Add("Section 2. This is the second paragraph of second section.");
pars2.Add ("Section 2. This is the third paragraph of second section.");

//Save the document
doc.Save ("AddSection.docx") ;

Back to Top

Modify Section

To modify a section in a Word document:

1. Access the paragraph collection in a section.
2. Add a new paragraph to the section.
3. Set the paper size using PageSetup property of the Section class.

C#

doc.Load ("AddSection.docx") ;

//Access the first section
Section secl = doc.Body.Sections.First;

//Access the paragraph collection in the first section

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 169

ParagraphCollection parsl = secl.GetRange () .Paragraphs;

//Add a new paragraph to the first section
parsl.Add("Section 1. Adding fourth paragraph to the first section.");

//Set the paper size
secl.PageSetup.Size.PaperSize = PaperSize.PaperA4;

//Save the document
doc.Save ("ModifySection.docx") ;

Back to Top

Remove Section

To remove a section or section break from a document, you can use one of the methods given below:

Method Description

MergeWithPrevious() = Removes the section break between two sections and the section content becomes the
content of the previous section.

MergeWithNext() Removes the section break between two sections and the section content becomes the
content of the next section.

Delete() Removes the section and its whole content.

1. Access the section in the document which needs to be removed.
2. Remove the section break by merging the section with the previous section using MergeWithPrevious
method of the Section class.

C#

doc.Load ("InsertSectionBreak.docx") ;

//Remove the section break
Section sec = doc.Body.Sections.Last;

//removing section break by merging a section with the previous one
sec.MergeWithPrevious() ;

doc.Save ("RemoveSectionBreak.docx") ;
Back to Top

Get Section Properties

To get the properties of a section, you need to access a particular section. For example, access the last section of the
document to get the direction of the text flow using the TextFlowDirection enumeration.

C#

SetSectionProperties () ;
doc.Load ("SetSectionProperties.docx");

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 170

//Access the last section of the document
Section secl = doc.Body.Sections.Last;

//Get the direction of text flow

TextFlowDirection TypeA = (TextFlowDirection)Enum.Parse (typeof (TextFlowDirection),

secl.PageSetup.TextFlowDirection.ToString());

//Write the fetched direction of text flow on the console
Console.WriteLine ("TextFlowDirection: " + TypeA);

Back to Top

Set Section Properties

To set the section properties using the Section object:

1. Access a section to set its properties. For example, access the last section.

2. Set the section properties. For example, set the direction of text flow in the section and the paper size for last
section of the document.

C#

doc.Load ("AddSection.docx") ;

//Access the last section of the document
Section sec = doc.Body.Sections.Last;

//Set the direction of text flow

sec.PageSetup.TextFlowDirection = TextFlowDirection.TopToBottomRightToLeft;
//Set the size of the paper for the last section
sec.PageSetup.Size.PaperSize = PaperSize.PaperA4;

doc.Save ("SetSectionProperties.docx") ;

Back to Top

For more information about how to implement sections using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/basics/content/sections/code-cs

Document Solutions for Word 171

Table

Tables in a document help in displaying the content in organized and structured manner. In DsWord, a table is a block

content object and is represented by the Table class which lets you access the structure, content and formatting of the
table.

In this section, you learn how to work with the following elements of the table:

® Table
e Cell
® Row

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 172

Table

DsWord allows you to add, modify, and delete a table from a Word document. A table can be created in a document
using Add or Insert method of the TableCollection class. It also lets you format the table using the TableFormat class

properties and apply styles to the table using Style class properties.

Adding a table:

Rowl, col 1

Rowl, col 2

Row1l, col 3

Row1l, col 4

Row 2, col 1

Row 2, col 2

Row 2, col 3

Row 2, col 4

Row 3, col 1

Row 3, col 2

Row 3, col 3

Row 3, col 4

Rowd, col 1

Rowd, col 2

Row4, col 3

Rowd, col 4

Row?5, col 1

Row5, col 2

Row 5, col 3

Row5, col 4

Rowa, col 1

Row 6, col 2

Row &, col 3

Row 6, col 4

Create Table

To create a table in Word document using DsWord:

1. Create a new Word document using an instance of the GcWordDocument class.

2. Get range of the first section in body of the document and add an empty table to the first section using the
Add method.

Add rows and cells to the table using the Add method.

Create a new table style using the Style class and apply it on the table.

5. Save the document using the Save method.

C#

> w

GcWordDocument doc = new GcWordDocument () ;
//Access the first section of the document
Section section = doc.Body.Sections.First;
//Add a paragraph in the section

Paragraph header = section.GetRange () .Paragraphs.Add (" Adding a table:");

// Add an empty table with:

int rows = 6;
int cols = 4;
Table t = section.GetRange() .Tables.Add (0, 0);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 173

// Add some rows and cells to it:

List<string> cells = new List<string>(cols);

for (int col = 0; col < cols; ++col)
cells.Add (string.Empty) ;

for (int row = 0; row < rows; ++row)
{
for (int col = 0; col < cols; ++col)
cells[col] = $"Row {row + 1}, col {col + 1}";

t.Rows.Add (cells.ToArray());

// Create a new table style:
Style tsl = doc.Styles.Add("Table Style 1", StyleType.Table);
foreach (var border in tsl.Table.Borders)
{
border.LineStyle = LineStyle.BasicBlackDots;
border.LineWidth 0.5f;
border.Color.RGB Color.Purple;

//Bpply the table style on the table
t.Style = tsl;

//Save the document
doc.Save ("CreateTable.docx") ;

Back to Top

Modify Table

To modify the table formatting in a Word document:

1. Load the document created in Create Table section, using the Load method.

2. Access formatting properties of the table through Format property of the Table class.

3. Modify the table. For example, modify the alignment of the table using the Alignment property and set the
AllowAutoFit property to allow the table cells to automatically resize according to their content.

C#

//Load an existing document
doc.Load ("CreateTable.docx") ;

//Access the table
Table t = doc.Body.Sections.First.GetRange () .Tables[0];

//Modify the table
t.Format.AllowAutoFit = true;

t.Format.Alignment = TableAlignment.Center;

//Save the document
doc.Save ("ModifiedDoc.docx") ;

Back to Top

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 174

Delete Table

To delete a table from a Word document:

1. Access the table from the table collection using Tables property of the RangeBase class.
2. Delete the table using the Delete method.

C#

//Load an existing document
doc.Load ("CreateTable.docx") ;

//Access the table
Table t = doc.Body.Sections.First.GetRange () .Tables[0];

//Delete the table
t.Delete();

//Save the document
doc.Save ("TableDeleted.docx") ;

Back to Top

AutoFit Table

To allow automatic resizing of cells in a table according to their content, use AllowAutoFit property of the
TableFormatBase class.
C#

//Load an existing document
doc.Load ("CreateTable.docx") ;

//Access the table and allow automatic resizing of the cells
Table t = doc.Body.Sections.First.GetRange () .Tables[0];
t.Format.AllowAutoFit = true;

//Save the document
doc.Save ("AutoFitEnabled.docx") ;

Back to Top

Split Table

To spit a table in a Word document:

1. Access a table and then access its row. For example, access the second row of the table.
2. Split the table from the specified row of an existing table.
3. Insert a paragraph between the two tables. This enables you to view two separate tables.

C#

doc.Load ("CreateTable.docx") ;

//Access the table and it's second row
Table t = doc.Body.Sections.First.GetRange () .Tables[0];

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 175

Row row = t.Rows[1l];

//This generates a new table from the specified row of an existing table.
Table splitTablel = t.Split(row, InsertLocation.After);

//Insert a paragraph (without content) between the two tables
splitTablel.GetRange () .Paragraphs.Insert (InsertLocation.Before);

//Save the document
doc.Save ("SplitTable.docx") ;

Back to Top

Set Table Styles

To set table styles in a Word document:

1. Access the table from the table collection using Tables property of the RangeBase class.

2. Add a new table style to the style collection using Add method of StyleCollection class.

3. Apply the style on the table using Style property of Table class.

4. Set formatting properties of the table, such as Description, Alignment, and Title and save the document.

C#

//Load the document
doc.Load ("CreateTable.docx") ;

//Access the table
Table t = doc.Body.Sections.First.GetRange () .Tables[0];

// Create a new table style:
Style tsl = doc.Styles.Add("Table Style 2", StyleType.Table);
tsl.Table.ColumnStripe=3;

// Assign the style to the table:
t.Style = tsl;

//Set table formatting

t.Format.Alignment = TableAlignment.Center;
t.Format.Title = "Test Table";

t.Format.Description = "This is the table description";

//Save the document
doc.Save ("SetTableInfo.docx");

Back to Top

Get Table Styles

To get table styles and formatting:

1. Access the table from the table collection using Tables property of the RangeBase class.
2. Fetch the existing table styles using the Style property and the table formatting using the Format property.
3. Display the fetched details on the console.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 176

C#

//Load the document
doc.Load ("SetTableInfo.docx") ;

//Access the table
Table t = doc.Body.Sections.First.GetRange () .Tables[0];

//Get table styles

Style st=t.Style;

uint cstripe = st.Table.ColumnStripe;

Console.WriteLine ("Table stripe: " + cstripe.ToString());

//Get table formatting
TableFormat tformat = t.Format;
string title = tformat.Title;

//Write the fetched title of the table on the console
Console.WriteLine ("Table Title: " + title);

Back to Top

Set Indents

To set the indentation of a table in Word document:

1. Add a new table style to the style collection using the Add method.
2. Set the indentation of the table, in points, using the Indent property
3. Apply the style on the table using the Style property.

C#

//Load the table

doc.Load ("CreateTable.docx") ;
//Access the table and allow automatic resizing of the cells
Table t = doc.Body.Sections.First.GetRange () .Tables[0];

t.Format.AllowAutoFit = true;

// Create a new table style to set the Indentation
Style tsl = doc.Styles.Add("Table Style 2", StyleType.Table);

//Set the indentation
tsl.Table.Indent = 3;

//Apply the style
t.Style = tsl;

//Save the document

doc.Save ("SetIndent.docx");

Back to Top

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 177

Get Indents

To get the indentation of a table from a Word document:

1. Access the table from the table collection using Tables property of the RangeBase class.
2. Fetch indentation of the table using Indent property.
3. Display the fetched table indentation on the console.

C#

//Load an existing document
doc.Load ("SetIndent.docx");

//Access the table
Table t = doc.Body.Sections.First.GetRange () .Tables[0];

//Get the style applied on the table
Style s = t.Style;

//Get the indentation
float indenting=s.Table.Indent;

//Write the fetched indentation(in points) on the console
Console.WritelLine ("Get Indenting: " + indenting);

Back to Top

For more information about implementation of tables using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/basics/tables/simple-table/code-cs

Document Solutions for Word

Cell

178

In DsWord, a cell element is represented by the Cell class which allows you to access each cell of a table which can be

added through Add method of the CellCollection class.

Each element of a table, such as row, column, and cell, can have different styles and formatting. DsWord allows you to
set the table cell formatting using Format property of the Cell class along with the CellFormat class properties. It

also lets you merge cells, both vertically and horizontally, in a table. The VerticalMerge property allows a cell to merge
vertically with the other cells in a table. Similarly, the HorizontalMerge property allows a cell to merge horizontally

with the other cells in a table.

Set Cell Formatting

To set cell formatting in a table:

1. Access the table from the table collection using Tables property of the RangeBase class.
2. Set cell formatting. For example, set flow direction of the text and padding of third cell in the first row.

C#

//Load the document and access the table
doc.Load ("CreateTable.docx") ;

Table t = doc.Body.Sections.First.GetRange () .Tables[0];

//Set cell formatting
t.Rows[0].Cells[2] .Format.TextFlowDirection =
TextFlowDirection.TopToBottomRightToLeft;

t.Rows[0].Cells[2].Format.Padding.Top = t.Rows[0].Cells[2].Format.Padding.Bottom

//Save the document
doc.Save ("SetCellFormatting.docx") ;

Back to Top

Get Cell Formatting

To get formatting of a cell from a table in an existing document:

1. Access the table from the table collection using Tables property of the RangeBase class.

2. Fetch the existing cell formatting using the Format property of the Cell class. For example, fetch the padding

of third cell in the first row.
C#
//Load the document and access the table

doc.Load ("SetCellFormatting.docx") ;
Table t = doc.Body.Sections.First.GetRange () .Tables[0];

//Get cell padding of the third cell in the first row
CellFormat cformat = t.Rows[0].Cells[2].Format;

float paddingTop = cformat.Padding.Top;

//Write the fetched padding on the console
Console.WritelLine ("Top Padding: " + paddingTop):;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 179

Back to Top

Merge Cells

To merge cells horizontally in a table:

1. Access the table from the table collection using Tables property of the RangeBase class.
2. Set the second cell of the second row to visually span two following cells, to merge the cells horizontally.
3. Remove the two following cells.

C#
//Load the document and access the table

doc.Load ("CreateTable.docx") ;
Table t = doc.Body.Sections.First.GetRange () .Tables[0];

// Set up cell (1,1) to visually span two following cells, hence merge the cells
t.Rows[l].Cells[1l].Format.GridSpan = 3;

// Remove the 2 following cells (unless we want to create a jagged table)
t.Rows[1l].Cells[3].Delete();
t.Rows[1l].Cells[2].Delete();

//Save the document
doc.Save ("MergedCells.docx") ;

Back to Top

Insert Graphic Elements

To insert a graphic element, such as an image, in a table cell:

1. Access a table in the document.

2. Load picture data into a byte array.

3. Access the cell where you want to add a picture and add the picture into the cell using Add method of
the PictureCollection class. For example, access the last cell.

4. Set the picture size and set the AllowAutoFit property to true to allow automatic resizing of the cell.

C#

doc.Load ("CreateTable.docx") ;

//Bccess the table
Table t = doc.Body.Sections.First.GetRange () .Tables[0];

// Load picture data

var picBytes = File.ReadAllBytes (Path.Combine ("Resources", "Images",
"road.jpg")):

// Add picture, specifying its mime type:

var pic = t.Rows.Last.Cells.Last.GetRange () .Runs.First.GetRange () .Pictures.Add

picBytes, "image/jpeg");

// Picture size

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 180

pic.Size.Width.Value 200;
pic.Size.Height.Value = 100;

//Allow automatic resizing of the cell
t.Format.AllowAutoFit = true;

//Save the document

doc.Save ("InsertGraphicElement.docx") ;

Back to Top

For more information about implementation of cells using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/basics/tables/grid-span/code-cs

Document Solutions for Word 181

Row

DsWord provides the Row class representing a table row element. A row can be added to a table through Add
method of the RowCollection class. DsWord provides you the access to the formatting properties of table row using
Format property of the Row class along with the RowFormat class properties. In addition to formatting a row, DsWord
allows you to get the row index, which can be done using Index property of the Row class.

Add Row

To add a new row to a table:

1. Access the table from the table collection using Tables property of the RangeBase class.
2. Add a row to the table using Add method of the RowCollection class.
C#

//Load the document and access the table
doc.Load ("CreateTable.docx") ;
Table t=doc.Body.Sections.First.GetRange () .Tables[0];

//Add a new row
string[] newrow = new string[4] { "NR1", "NR2", "NR3", "NR4" };
t.Rows.Add (newrow) ;

//Save the document
doc.Save ("RowAdded.docx") ;

Back to Top

Delete Row

To delete a row from a table:

1. Access the table from the table collection using Tables property of the RangeBase class.
2. Delete a row of the table using the Delete method.

C#

//Load the document and access the table
doc.Load ("CreateTable.docx") ;
Table t = doc.Body.Sections.First.GetRange () .Tables[0];

//Delete the fourth row from the table
t.Rows[3] .Delete();

//Save the document
doc.Save ("RowDeleted.docx") ;

Back to Top

Get Row Index

To fetch the row index from a table:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 182

1. Access the table from the table collection using Tables property of the RangeBase class.
2. Get the row index of third row in the table using the Index property.
3. Display the row index on the console.

C#

//Load the document and access the table
doc.Load ("CreateTable.docx") ;

Table t = doc.Body.Sections.First.GetRange () .Tables[0];

//Get the row index
int i=t.Rows[2].Index;

//write the row index on the console

Console.WritelLine ("Row Index for selected row is:" + 1i);

Back to Top

Format Rows

To format the rows in a table:

1. Access the table from the table collection using Tables property of the RangeBase class.
2. Set alignment for the table row using Alignment property of the RowFormat class.
3. Set spacing between the cells using Spacing property of the RowFormat class.

Back to Top

C#

//Load the document and access the table
doc.Load ("CreateTable.docx") ;
Table t = doc.Body.Sections.First.GetRange () .Tables[0];

//Set the alignment of a row and spacing between the cells
t.Rows[0] .Format.Alignment = TableAlignment.Right;
t.Rows[0] .Format.Spacing = 4F;

//Save the document
doc.Save ("FormattedRow.docx") ;

Back to Top

For more information about implementation of rows using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/

Document Solutions for Word 183

Text

DsWord provides Text class to handle text element in the body of a document. It allows you to add text to a word
document using Add method of the TextCollection class. By default, DsWord adds text to a document in a single
column which covers the body of the document from one margin to other. However, you can change this formatting
and create multiple columns using the TextColumn class. This class represents a text column and all the columns of
text in a section are represented through the TextColumnCollection class.

Additionally, DsWord supports rendering text in multiple languages, including right-to-left, far eastern languages and
vertical text with advanced paragraph formatting and multi-language font support. For right-to-left languages, you
need to additionally set Bidi property of the ParagraphFormat class.

For more information on vertical text, see Vertical text.

Add Text

To add text in a Word document:

1. Access a section where you want to add text using the GetRange method. For example, access the first run of a
section.

2. Access the text collection using Texts property of the RangeBase class.

3. Insert text into the text collection using Insert method of the TextCollection class.

C#

doc.Load ("SampleDoc.docx") ;

//Add Text
doc.Body.Sections.First.GetRange () .Runs.First.GetRange () .Texts.Insert (

" Hello World! This document is created using DsWord. ",

InsertLocation.End) ;

//Insert font formatting for the run

Style s = doc.Styles.Add ("NewStyle", StyleType.Character);
s.Font.Name = "Times New Roman";

s.Font.Underline = Underline.Thick;
doc.Body.Sections.First.GetRange () .Runs.First.Style = s;

//Add new run and text
doc.Body.Sections.First.GetRange () .Paragraphs.First.GetRange () .Runs.Insert ("New
line " +

"of the second run", InsertLocation.End);

//Save the document
doc.Save ("AddText .docx") ;

Back to Top

Modify Text

To modify text in a Word document:

1. Access a run and the run text to modify text using the Runs and Texts property of the RangeBase class. For
example, access the first run and the first run text.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 184

2. Split the run text using Split method of the Text class and split the run using Split method of the Run class

respectively.

3. Apply styling to the first and the second run. For example, italicize and bold the run text.

C#

doc.Load ("AddText .docx") ;

//Access first run and change its font size
Run firstRun = doc.Body.Sections.First.GetRange () .Runs.First;
firstRun.Font.Size = 16;

//Get first run text
Text firstRun Text = firstRun.GetRange () .Texts[0];

//Split first run text
Text splitText = firstRun Text.Split(14);

//Split Run
Run splitRun = firstRun.Split (splitText, InsertLocation.Before);

//Bpply styling to first run

firstRun Text.ParentRun.Font.Bold = true;

//Apply styling to second/new run
splitRun.Font.Italic = true;

//Save the document
doc.Save ("ModifyText.docx") ;

Back to Top

Delete Text

To delete text in a Word document:

1. Access the section where you want to delete text using the GetRange method. For example, access the first run
of a section.
2. Access the text from the text collection using Texts property of the RangeBase class.
3. Delete the text using Delete method of the ContentObject class.
C#
doc.Load ("AddText .docx") ;
//Delete Text
doc.Body.Sections.First.GetRange () .Runs.First.GetRange () .Texts.First.Delete () ;
doc.Save ("DeleteText.docx") ;
Back to Top

Align Text

To align text in a Word document:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 185

1. Access a paragraph from the paragraph collection using the Paragraphs property.

2. Access a part of a paragraph from the run collection using the Runs property.

3. Set the alignment of text in the paragraph using Alignment property of the ParagraphFormat class. For
example, center align the text.

C#

doc.Load ("SampleDoc.docx") ;

//Create a new style

Style s = doc.Styles.Add ("NewStyle", StyleType.Paragraph);
s.Font.Name = "Times New Roman";

s.Font.Underline = Underline.Thick;

//Center align text
s.ParagraphFormat.Alignment = ParagraphAlignment.Center;

//BApply style to the paragraph
Paragraph p = doc.Body.Sections.First.GetRange () .Paragraphs.Add("Hello World!",
s) i

//Add text to the new paragraph
p.GetRange () .Runs.First.GetRange () .Texts.Insert (" The text is center aligned.",
InsertLocation.End);

//Add new run and text to the first paragraph
doc.Body.Sections.First.GetRange () .Paragraphs.First.GetRange () .Runs.Insert (" It"
+

" includes an example of text alignment.", InsertLocation.End);

doc.Save ("AlignText.docx") ;
Back to Top
Get Document Text
To get whole text of the document, use the Body.Text property.

C#

doc.Load ("TestDoc.docx") ;

//Fetch text at document level
Console.WritelLine (doc.Body.Text) ;

Back to Top

Set Subscript and Superscript Text

DsWord provides FontBase.VerticalPosition property of the SubSuperScript class for applying subscript and
superscript styles on particular characters in the text to be rendered in the Word document. This property accepts
values from the VerticalTextPosition enumeration.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 186

Subscript: CsH1:0s

Superscript: January 1%

To add subscript or superscript text:

1. Initialize the GeWordDocument class to create a Word document.

2. Define a style using the Style class, with the StyleType set to character. This ensures that the mentioned style
options apply to the individual characters in the paragraph or text run to which the style is applied.

3. Set the VerticalPosition property of the defined character style to Subscript or Superscript, to allow the text to
be repositioned as subscript or superscript.

4. Loop through the characters of the paragraph to be rendered, and identify the characters which should be
rendered as superscript or subscript. Apply the style with subscript/superscript settings to the character by
adding a new run to the paragraph being rendered.

C#

GcWordDocument doc = new GcWordDocument () ;

//Create subscript and superscript styles

Style subscriptStyle = doc.Styles.Add("Subscript Style",StyleType.Character);
subscriptStyle.Font.VerticalPosition = VerticalTextPosition.Subscript;

Style superscriptStyle = doc.Styles.Add ("Superscript Style",
StyleType.Character) ;

superscriptStyle.Font.VerticalPosition = VerticalTextPosition.Superscript;

//Add a paragraph
var paral = doc.Body.Sections.First.GetRange () .Paragraphs.Add("Subscript: ");
string chemicalFormula = "C6H1206";

//Add text to paragraphl
foreach (char ¢ in chemicalFormula)
{
//If the character is a digit render it with the subscript style
if (Char.IsDigit(c))
paral.GetRange () .Runs.Add (c.ToString (), subscriptStyle);
else
paral.GetRange () .Runs.Add (c.ToString()) ;

//Add another paragraph

var paraz2= doc.Body.Sections.First.GetRange () .Paragraphs.Add ("Superscript: ");
string date="January lst";

var dateFrags = Regex.Split(date, " (st)");

//Add text to the paragraph?2
foreach (var frag in dateFrags)
{
//Render the text "st" with superscript style
if (frag=="st")
para2.GetRange () .Runs.Add (frag, superscriptStyle);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 187

else
para2.GetRange () .Runs.Add (fragqg) ;

//Saves the document
doc.Save ("SubSuperScript.docx") ;

For more information on how to render superscript and subscript text using DsWord, see DsWord sample browser.

Fit Text Width

DsWord lets you fit a text into the width specified by FontBase.FitTextWidth property of the FitTextWidth class
which resizes every character of the text equally to achieve the purpose.

To fit text into the specified width:

1. Initialize the GeWordDocument class to create a Word document.

2. Define a style using the Style class, with the StyleType set to character. This ensures that the mentioned style
options apply to the individual characters in the paragraph or text run to which the style is applied.

3. Set the FitTextWidth property of the defined style to a desired value, to define the width in which the
rendered text should fit.

C#

//Create new PDF document
GcWordDocument doc = new GcWordDocument () ;
Paragraph para =
doc.Body.Sections.First.GetRange () .Paragraphs.Add (
"FitTextWidth examples: \r\n");
para.Style.Font.Size = 14;

//Define styles with FitTextWidth and FitTextId settings

Style runlStyle = doc.Styles.Add("Stylel", StyleType.Character);
runlStyle.Font.Bold = true;

runlStyle.Font.Size = 16;

runlStyle.Font.FitTextWidth = 400;

runlStyle.Font.FitTextId = 1;

Style run2Style = doc.Styles.Add("Style2", StyleType.Character);
run2Style.Font.Italic = true;

run2Style.Font.Size = 18;

run2Style.Font.FitTextWidth = 400;

run2Style.Font.FitTextId = 1;

//Bpply the defined styles to the text
para.GetRange () .Runs.Add ("This is runl of paragraphl.", runlStyle);
para.GetRange () .Runs.Add (" This is run2 of paragraphl " +

"with a different formatting.", run2Style);

//Save the document
doc.Save ("FitTextWidth.docx") ;

Back to Top

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/subsuperscript/code-cs

Document Solutions for Word 188

Vertical Text

DsWord supports rendering vertical text through TextFlowDirection property of the PageSetup class which accepts
value from the TextFlowDirection enumeration. To set the vertical text alignment and reading order of the content in
right to left direction, set this property to TopToBottomRightToLeft. This property draws the text in top-to-bottom,
right-to-left layout. Additionally, DsWord supports rendering short upright Latin text or numbers in a block of vertical
text referred to as #tH'1# (Tate Chu Yoko) in Japanese. You can set such blocks of horizontal text in vertical text
through HorizontallnVertical property of the EastAsianLayout class.

H* HT
F EHEHET
= EREE
(E
HEEBICZ
o T
H 4 # A
£ 5 H Z
B EFE X
B o ohoic
B LT 2
j"é%b&”
= R = A
Z v F
LT E
i E -
3 &
? A =
s
H L
T

S W T &

C#

doc.Load ("Sample.docx") ;

//Add heading
doc.Body.Sections.First.GetRange () .Paragraphs.Add ("Japanese",
doc.Styles[BuiltInStyleId.Headingl]) ;

//Add a paragraph with Japanese text

string text = "HAGE (WWIEFAT. CoFAT) & F&EL T " +
"HAYISTHHSN TELTHETH L. HATHEEREL T2HE L EE#HRHT " +
"EEETOAREEEEAARFEES —Fihe 35, ";

doc.Body.Sections.First.GetRange () .Paragraphs.Add (text) ;
//Use TopToBottomRightToLeft page layout to draw the japanese text
doc.Body.Sections.First.PageSetup.TextFlowDirection =

TextFlowDirection.TopToBottomRightToLeft;

//Save the document
doc.Save ("VerticalText.docx");

Back to Top

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 189

Find and Replace Text

DsWord allows you to find and replace text in a document using the Find and Replace methods
of RangeBaseFindReplaceExtensions class. The RangeBaseFindReplaceExtensions class extends RangeBase class
and hence, its methods can be used on any range.

The search pattern for the Find and Replace methods can be any static text, regex or special token. The supported
special tokens are:

® Paragraph end - &p

® Manual break object - &I
® Page break - &m

® Section break - &b

Find Text

The Find method finds all the occurences of a user-defined search pattern in a document. It also provides various find
options using which you can search backwards, ignore case, define culture, use regular expressions or get formatting
options

To find text in a document:

1. Specify the search pattern which needs to be found in a document.

2. Load the document using Load method of GeWordDocument class.

3. Find the specified search pattern using the Find method of RangeBaseFindReplaceExtensions class.
4. Get the count of total occurences of the search pattern by using the Count function.

C#

// find pattern contains static text and special token

const string findPattern = "javascript frameworké&p";

// Load the document
var doc = new GcWordDocument () ;
doc.Load ("JsFrameworkExcerpt.docx") ;

// Find all occurrences of the search string, ignoring the case
var finds = doc.Body.Find(findPattern, new FindOptions(doc) { IgnoreCase = true

1)

// Print the number of found occurrences at the top of the document
doc.Body.Paragraphs.Insert ($"Found {finds.Count ()} occurrences of
'{findPattern}' in the document.\n\n", InsertlLocation.Start);

// Done
doc.Save ("FindText.docx") ;

Back to Top
Replace Text

The Replace method finds and replaces all the occurences of a user-defined search pattern in a document with the
text to be replaced. The ReplaceAction enum specifies what action should be taken on finding a match, like replacing,
skipping the current match or stopping the search.

To find and replace text in a document using regex and special tokens:

© 2024 MESCIUS inc. All rights reserved.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference

Document Solutions for Word

190

. Create a new Word document by instantiating the GcWordDocument class.

Add paragraphs using Add method of the ParagraphCollection class.
Find and replace the specified search pattern (regex and special token) with a static string using Replace
method of RangeBaseFindReplaceExtensions class.

C#

var doc = new GcWordDocument () ;

// Add paragraph

doc.Body.Paragraphs.Add ("Document Solutions is a cross-platform solution for
document managementl");

doc.Body.Paragraphs.Add ("which aims to provide a universal document, editor and
viewer solution for all popular document formats.");

//Replace using regex and special token
RangeBaseFindReplaceExtensions.Replace (doc.Body, "[0-9]&p", ". It");

doc.Save ("RemoveDigits.docx") ;

Back to Top

Z Note: A search pattern can also be removed from a document by passing the replaceText string as empty.

If replacing text leads to any empty runs in a document, you can choose to delete those empty runs by
using RemoveEmptyRuns property of FindReplaceOptions class.

To replace text with empty text and remove empty runs in a document:

M=

Create a new Word document by instantiating the GcWordDocument class.

Add a paragraph using Add method of the ParagraphCollection class.

Add runs to the paragraph using Add method of RunCollection class

Invoke the Replace method of the RangeBaseFindReplaceExtensions class to replace second and third runs
with empty text and set RemoveEmptyRuns property to true.

C#

var doc = new GcWordDocument () ;
var para = doc.Body.Paragraphs.Add();

para.GetRange () .Runs.Add ("first run");

) .
para.GetRange () .Runs.Add (" second run");
para.GetRange () .Runs.Add (" third run");
para.GetRange () .Runs.Add (" fourth run");
Console.WriteLine (String.Format (@"Current paragraph text is ""{0}"" and runs
count = {1}", para.GetRange() .Text, para.GetRange () .Runs.Count));

Console.WriteLine ("Removed text from second and third runs");

//Replace second and third runs with empty text and remove empty runs

para.GetRange () .Replace (" second run third run", "", new FindReplaceOptions (doc)
{ RemoveEmptyRuns = true });

Console.WriteLine (String.Format (@"Current paragraph text is ""{0}"" and runs
count = {1}", para.GetRange () .Text, para.GetRange () .Runs.Count));

return doc;

Replace Text using Regex and Special Tokens

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

In case, each match is to be replaced by a different value (like numerals to textual
representation), the FindReplaceOptions class provides callback functions for the same.

To find and replace digits to their textual representation in a document using callback method:

Create a new Word document by instantiating the GcWordDocument class.
Add a paragraph using Add method of the ParagraphCollection class.

Moo=

is used to determine the replacement string.
C#

/// Replace all digits with their textual representation
/// <returns>Document without digits</returns>

public void ReplaceDigitsWithText ()

{

var doc = new GcWordDocument () ;

191

Invoke the Replace method of the RangeBaseFindReplaceExtensions class to perform the replace operation.
Pass the ReplacingCallback function with a callback method name as one of the parameters to it. This method

var para = doc.Body.Paragraphs.Add("The game board was yellow with numbers;
2 digits, a space, and 3 digits. All the digits 0 to 9 were placed same width

apart");

doc.Body.Replace ("[0-9]", "", new FindReplaceOptions (doc) {
ReplacingCallback = new ReplaceDigitsWithTextCb () .Replacing });

doc.Save ("NumeralsToTextualDigits.docx") ;
}
private class ReplaceDigitsWithTextCb
{

Dictionary<string, string> numbers = new Dictionary<string, string>()

{{"1","one"}, {"2", "two"}, {"3", "three"}, {"4","four"}, {"5",""five"},

{"e","six"}, {"7", "seven" 1},

{ "8", "eight"}, {"9", "ninen}, {"O", "Zero"}};

//Callback method called on every found match. There we can examine found

match
//and change replacement string
public ReplaceAction Replacing(ReplacingArgs args)
{
args.Replacement =
_numbers.Keys.Contains (args.RegexDetails.Capture.Value) ?
_numbers [args.RegexDetails.Capture.Value] : " ";
return ReplaceAction.Replace;

Back to Top

Replace Formatting

The find and replace operations can also be performed based on the formatting rules like any font, color or style etc.

To find and replace green text in a document:

1. Create a new Word document by instantiating the GcWordDocument class.
2. Add a paragraph using Add method of the ParagraphCollection class.
3. Add runs to the paragraph using Add method of RunCollection class.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 192

4. Apply red and green color to the runs separately by using the Color property of FontBase class.

5. Create an instance of FindReplaceOptions class and configure its FormattingOptions property to search
for text in the document which is green in color.

6. Replace the green text with an empty string by using the Replace method of
RangeBaseFindReplaceExtensions class.

C#

//create document
var doc = new GcWordDocument () ;
//create paragraph
var para = doc.Body.Paragraphs.Add()
//add green text to paragraph
var run_green = para.GetRange () .Runs.Add("Document Solutions for Word library is
a part of Document Solutions that " +

"aims to be a complete solution to program and work with Word documents.");
//add red text to paragraph
var run_red = para.GetRange().Runs.Add ("It offers a rich and comprehensive
object model " +

"which is simple to use and is based on Microsoft Office API, Word
Javascript API and OpenXML SDK.");

//color red text as red
run_red.Font.Color.RGB = Color.Red;
//color green text as green
run_green.Font.Color.RGB = Color.Green;
var fo = new FindReplaceOptions (doc);
//find green text

fo.FormattingOptions.Font.Color.RGB = Color.Green;

//replace any found green text to empty string
doc.Body.Replace("", "", fo);

//save result document
doc.Save ("RemovingTextinGreenColor.docx") ;

Back to Top

For more information on how to work with text objects using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/

Document Solutions for Word 193

Themes

Themes, in a Word document, helps in making the global formatting changes, giving your document a consistent and
professional look. Hence, themes are generally used to reinforce a brand across every document that is generated by
a business.

DsWord allows you to customize the themes applied to a Word document through the Theme class which can be
accessed using Theme property of the GcWordDocument class. The Theme class saves the font and colors that would
be used in the document using the FontScheme and ColorScheme properties.

The theme font can be set using the FontScheme property of the Theme class. This property is of type FontScheme
class which provides the MajorFont and MinorFont properties to specify the font for heading and body respectively.

And, to set the theme colors you would need to fetch the theme color scheme using the GetThemeColor method of
the Settings class which accepts the ThemeColorld as a parameter. This method returns an instance of
the ThemeColor class, which provides the RGB property to set the value of a color in the color scheme of the theme.

To change the theme color and font in a Word document:

1. Access the color scheme of the document using GetThemeColor method of the Settings class.

2. Set the value of a color in the color scheme of the theme using the RGB property of the ThemeColor class. For
example, set dark
orange color for Accent1 theme color and dark blue color for the hyperlink theme color.

3. Access the font scheme for the document using FontScheme property of the Theme class.

4. Set the theme font for heading and body of the document using the Name property of the ThemeFont class.

C#

GcWordDocument doc = new GcWordDocument () ;
var section = doc.Body.Sections.First;

//Add Heading
section.GetRange () .Paragraphs.Add ("Working with Themes",
doc.Styles[BuiltInStyleId.Headingl]);

//Add the first paragraph

var p = section.GetRange () .Paragraphs.Add (
"This sample shows how you can access and manipulate" +
" the document theme properties." +

" For more information, refer to ");

//Add a hyperlink
Hyperlink linkl = p.GetRange () .Hyperlinks.Add (
new Uri ("https://www.google.co.in/"),

""", "Google");

//Customizing the color scheme (theme colors) of the document.
//Setting the Accentl theme color

doc.Settings.GetThemeColor [ThemeColorId.Accentl] .RGB = Color.DarkOrange;

//Setting the Hyperlink theme color
doc.Settings.GetThemeColor [ThemeColorId.Hyperlink] .RGB = Color.DarkBlue;

//Setting the FollowedHyperlink theme color
doc.Settings.GetThemeColor [ThemeColorId.FollowedHyperlink] .RGB = Color.DarkGray;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 194

//Customizing the font scheme (theme fonts) of the document
//Setting Major (Heading) theme font for Latin characters
doc.Theme.FontScheme.MajorFont.Latin.Name = "Calibri";

//Setting Minor (Body) theme font for Latin characters
doc.Theme.FontScheme.MinorFont.Latin.Name = "Century Gothic";

//Saves the document

doc.Save ("Themes.docx") ;

For more information on how to modify theme colors using DsWord, see DsWord sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/

Document Solutions for Word

195

Helper Methods for Adding Content

DsWord provides various Add methods in the classes to add different content elements directly, thus making the code
shorter, clearer, and the content elements easily accessible. The following table lists the various Add methods added

to the classes:

Class

Body

Section

Table
Row

Cell

Paragraph

Method

AddTable
AddParagraph
AddContentControl

CanAdd

CanAddContentControl

AddTable
AddParagraph
AddContentControl
CanAdd

CanAddContentControl

AddContentControl
AddContentControl
AddTable
AddParagraph
AddContentControl
AddSimpleField
AddHyperlink

AddBidirectionalOverride

AddOMathParagraph
AddOMath

AddRun
AddFootnote
AddEndnote
AddComplexField
AddContentControl
AddSectionBreak

© 2024 MESCIUS inc. All rights reserved.

Description

Adds a Table to the end of the body.

Adds a Paragraph to the end of the body.
Adds a ContentControl to the end of the body.

Gets whether a ContentObject type can be added to the end of
the body.

Gets whether a ContentControl with a specified type can be added
to the end of the body.

Adds a Table to the end of the section.
Adds a Paragraph to the end of the section.
Adds a ContentControl to the end of the section.

Gets whether a ContentObject type can be added to the end of
the section.

Gets whether a ContentControl with a specified type can be added
to the end of the section.

Adds a ContentControl to the end of the table.

Adds a ContentControl to the end of the row.

Adds a Table to the end of the cell.

Adds a Paragraph to the end of the cell.

Adds a ContentControl to the end of the cell.

Adds a SimpleField to the end of the paragraph.

Adds a Hyperlink to the end of the paragraph.

Adds a BidirectionalOverride to the end of the paragraph.
Adds an OMathParagraph to the end of the paragraph.
Adds an OMath to the end of the paragraph.

Adds a Run to the end of the paragraph.

Adds a Footnote to the end of the paragraph.

Adds an Endnote to the end of the paragraph.

Adds a ComplexField to the end of the paragraph.
Adds a ContentControl to the end of the paragraph.

Breaks the parent section right after this paragraph.

Document Solutions for Word 196

SimpleField AddSimpleField Adds a SimpleField to the end of the simple field.
AddHyperlink Adds a Hyperlink to the end of the simple field.
AddBidirectionalOverride | Adds a BidirectionalOverride to the end of the simple field.

AddOMathParagraph Adds an OMathParagraph to the end of the simple field.

AddOMath Adds an OMath to the end of the simple field.
AddRun Adds a Run to the end of the simple field.
AddFootnote Adds a Footnote to the end of the simple field.
AddEndnote Adds an Endnote to the end of the simple field.
AddComplexField Adds a ComplexField to the end of the simple field.
AddContentControl Adds a ContentControl to the end of the simple field.
Hyperlink AddSimpleField Adds a SimpleField to the end of the hyperlink.
AddHyperlink Adds a Hyperlink to the end of the hyperlink.

AddBidirectionalOverride Adds a BidirectionalOverride to the end of the hyperlink.
AddOMathParagraph Adds an OMathParagraph to the end of the hyperlink.

AddOMath Adds an OMath to the end of the hyperlink.

AddRun Adds a Run to the end of the hyperlink.

AddFootnote Adds a Footnote to the end of the hyperlink.

AddEndnote Adds an Endnote to the end of the hyperlink.

AddComplexField Adds a ComplexField to the end of the hyperlink.

AddContentControl Adds a ContentControl to the end of the hyperlink.
BidirectionalOverride AddSimpleField Adds a SimpleField to the end of the bidirectional override.

AddHyperlink Adds a Hyperlink to the end of the bidirectional override.

AddBidirectionalOverride Adds a BidirectionalOverride to the end of the bidirectional
override.

AddOMathParagraph Adds an OMathParagraph to the end of the bidirectional override.

AddOMath Adds an OMath to the end of the bidirectional override.
AddRun Adds a Run to the end of the bidirectional override.
AddFootnote Adds a Footnote to the end of the bidirectional override.
AddEndnote Adds an Endnote to the end of the bidirectional override.
AddComplexField Adds a ComplexField to the end of the bidirectional override.
AddContentControl Adds a ContentControl to the end of the bidirectional override.
OMathParagraph AddOMath Adds an OMath to the end of the Office Math paragraph.
AddRun Adds a Run to the end of the Office Math paragraph.
AddFootnote Adds a Footnote to the end of the Office Math paragraph.
AddEndnote Adds an Endnote to the end of the Office Math paragraph.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

OMath

OMathElement

AddComplexField
AddSimpleField
AddHyperlink
AddRun
AddFootnote
AddEndnote
AddComplexField
AddOMathStruct
AddContentControl
AddAccent
AddBar
AddBorderBox
AddBox
AddDelimiter

AddEquationArray

AddFraction
AddFunction

AddGroupCharacter

AddLimitLower
AddLimitUpper
AddMatrix
AddNary
AddOMathStruct
AddPhantom

AddPreSubSuperscript

AddRadical
AddSubscript
AddSubSuperscript

AddSuperscript
AddSimpleField
AddHyperlink
AddRun

© 2024 MESCIUS inc. All rights reserved.

197

Adds a ComplexField to the end of the Office Math paragraph.
Adds a SimpleField to the end of the Office Math zone.

Adds a Hyperlink to the end of the Office Math zone.

Adds a Run to the end of the Office Math zone.

Adds a Footnote to the end of the Office Math zone.

Adds an Endnote to the end of the Office Math zone.

Adds a ComplexField to the end of the Office Math zone.

Adds a new OMathStruct to the end of the Office Math zone.
Adds a ContentControl to the end of the Office Math zone.
Adds a new OMathAccent to the end of the Office Math zone.
Adds a new OMathBar to the end of the Office Math zone.
Adds a new OMathBorderBox to the end of the Office Math zone.
Adds a new OMathBox to the end of the Office Math zone.
Adds a new OMathDelimiter to the end of the Office Math zone.

Adds a new OMathEquationArray to the end of the Office Math
zone.

Adds a new OMathFraction to the end of the Office Math zone.
Adds a new OMathFunction to the end of the Office Math zone.

Adds a new OMathGroupCharacter to the end of the Office Math
zone.

Adds a new OMathLimitLower to the end of the Office Math zone.
Adds a new OMathLimitUpper to the end of the Office Math zone.
Adds a new OMathMatrix to the end of the Office Math zone.
Adds a new OMathNary to the end of the Office Math zone.

Adds a new OMathStruct to the end of the Office Math zone.
Adds a new OMathPhantom to the end of the Office Math zone.

Adds a new OMathPreSubSuperscript to the end of the Office
Math zone.

Adds a new OMathRadical to the end of the Office Math zone.
Adds a new OMathSubscript to the end of the Office Math zone.

Adds a new OMathSubSuperscript to the end of the Office Math
zone.

Adds a new OMathSuperscript to the end of the Office Math zone.
Adds a SimpleField to the end of the Office Math element.
Adds a Hyperlink to the end of the Office Math element.

Adds a Run to the end of the Office Math element.

Document Solutions for Word

Run

AddFootnote
AddEndnote
AddComplexField
AddOMathStruct
AddContentControl
AddAccent

AddBar

AddBorderBox

AddBox

AddDelimiter

AddEquationArray

AddFraction
AddFunction

AddGroupCharacter

AddLimitLower

AddLimitUpper

AddMatrix
AddNary
AddOMathStruct

AddPhantom

AddPreSubSuperscript

AddRadical
AddSubscript

AddSubSuperscript

AddSuperscript

AddGroupShape
AddCanvasShape

© 2024 MESCIUS inc. All rights reserved.

198

Adds a Footnote to the end of the Office Math element.

Adds an Endnote to the end of the Office Math element.

Adds a ComplexField to the end of the Office Math element.
Adds a new OMathStruct to the end of the Office Math element.
Adds a ContentControl to the end of the Office Math element.
Adds a new OMathAccent to the end of the Office Math element.
Adds a new OMathBar to the end of the Office Math element.

Adds a new OMathBorderBox to the end of the Office Math
element.

Adds a new OMathBox to the end of the Office Math element.

Adds a new OMathDelimiter to the end of the Office Math
element.

Adds a new OMathEquationArray to the end of the Office Math
element.

Adds a new OMathFraction to the end of the Office Math element.
Adds a new OMathFunction to the end of the Office Math element.

Adds a new OMathGroupCharacter to the end of the Office Math
element.

Adds a new OMathLimitLower to the end of the Office Math
element.

Adds a new OMathLimitUpper to the end of the Office Math
element.

Adds a new OMathMatrix to the end of the Office Math element.
Adds a new OMathNary to the end of the Office Math element.
Adds a new OMathStruct to the end of the Office Math element.

Adds a new OMathPhantom to the end of the Office Math
element.

Adds a new OMathPreSubSuperscript to the end of the Office
Math element.

Adds a new OMathRadical to the end of the Office Math element.

Adds a new OMathSubscript to the end of the Office Math
element.

Adds a new OMathSubSuperscript to the end of the Office Math
element.

Adds a new OMathSuperscript to the end of the Office Math
element.

Adds a GroupShape to the end of the run.

Adds a CanvasShape to the end of the run.

Document Solutions for Word

GroupShape

CanvasShape

TextFrame

ControlContent

ContentObject

AddShape

AddPicture
AddInkShape
AddText
AddTab
AddBreak
AddSymbol
AddGroupShape
AddShape

AddPicture
AddInkShape
AddGroupShape
AddShape

AddPicture
AddInkShape
AddTable
AddParagraph
AddContentControl
AddTable
AddParagraph
AddSimpleField
AddHyperlink
AddBidirectionalOverride
AddOMathParagraph
AddOMath

AddRun
AddFootnote
AddEndnote
AddComplexField
AddContentControl
CanAdd

CanAddContentControl

© 2024 MESCIUS inc. All rights reserved.

199

Adds a new GeometryType.Rectangle 100 x 100 points Shape to
the end of the run.

Adds a new Picture to the end of the run.

Adds an InkShape to the end of the run.

Adds a Text to the end of the run.

Adds a Tab to the end of the run.

Adds a Break to the end of the run.

Adds a Symbol to the end of the run.

Adds a GroupShape to the end of the group shape.

Adds a new GeometryType.Rectangle 100 x 100 points Shape to
the end of the group shape.

Adds a new Picture to the end of the group shape.
Adds an InkShape to the end of the group shape.
Adds a GroupShape to the end of the canvas shape.

Adds a new GeometryType.Rectangle 100 x 100 points Shape to
the end of the canvas shape.

Adds a new Picture to the end of the canvas shape.

Adds an InkShape to the end of the canvas shape.

Adds a Table to the end of the text frame.

Adds a Paragraph to the end of the text frame.

Adds a ContentControl to the end of the text frame.

Adds a Table to the end of the control content.

Adds a Paragraph to the end of the control content.

Adds a SimpleField to the end of the control content.

Adds a Hyperlink to the end of the control content.

Adds a BidirectionalOverride to the end of the control content.
Adds an OMathParagraph to the end of the control content.
Adds an OMath to the end of the control content.

Adds a Run to the end of the control content.

Adds a Footnote to the end of the control content.

Adds an Endnote to the end of the control content.

Adds a ComplexField to the end of the control content.
Adds a ContentControl to the end of the control content.

Gets whether a ContentObject type can be added to this content
object.

Gets whether a ContentControl type can be added to this content

Document Solutions for Word 200

object.
Refer to the following example code to add run and hyperlink directly to the paragraph:

C#

// Initialize GcWordDocument.
GcWordDocument doc = new GcWordDocument () ;

// Add paragraph with default formatted text.
var p = doc.Body.AddParagraph ("AddRun and AddHyperlink methods will add the run and
hyperlink directly to the paragraph. ");

// Add another text and a hyperlink into the paragraph formatted with "Headingl"
style.
/* Earlier, the code would have looked like this:

p.GetRange () .Runs.Add ("Follow this link to open Google. ",
doc.Styles[BuiltInStyleId.Headingl]) ;

Hyperlink linkl = p.GetRange () .Hyperlinks.Add (new Uri ("http://www.google.com"),"",
"Click here.");

Now the code is shorter and more clear about what content can be added to the
object. */
p.AddRun ("Follow this link to open Google. ", doc.Styles[BuiltInStyleId.Headingl]);
p.AddHyperlink (new Uri ("http://www.google.com"),"", "Click here.");

// Save the Word document.

doc.Save ("HelperMethods.docx", DocumentType.Document) ;

Refer to the following example code to check if a paragraph can be added after content control using CanAdd
method:

C#

// Initialize GcWordDocument.

var doc = new GcWordDocument () ;

// Add a paragraph.
var p = doc.Body.Paragraphs.Add()

// Add content control.
var cc = p.AddContentControl (ContentControlType.RichText) .Content;

// Check if a paragraph can be added or not and add a paragraph; otherwise, add a
run.
if (cc.CanAdd(typeof (Paragraph))) // Returns false since the content control was
created on inline level.

cc.AddParagraph ("rich text");
else

cc.AddRun ("rich text");

// Save the document.
doc.Save ("CanAdd.docx") ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 201

Report Templates

Every organization needs to maintain important documents such as financials, legal contracts and agreements, resources and
logistics, recruitments and various others. Such documents contain similar type of static content with dynamic values like
dates, costs, names, numbers etc. Creating and modifying these documents every single time consumes a considerable
amount of time and effort. Also, the chances of manual error cannot be eliminated altogether. Therefore, the need for Data
or Report Templates.

Z] Note: Please note that '‘Report Templates' and '‘Data Templates' are two names for the same feature and can be used
interchangeably.

The template layout can be created in Word which can contain static content as well as placeholder fields for dynamic
values. When the template is processed by using DsWord API, it is bound to a data source which populates the placeholder
fields with actual data and generates the final Word document with advanced layouts.

Lets take a simple example where a placeholder field is defined in mustache braces {{ }} in a template layout:
Hello {{ds.name}} <After Template processing> Hello John
Here, ds is the name of data source and John is the value in 'name' data field.
Some of the powerful features provided by DsWord Report Templates are as follows:
® Flexible: Highly flexible template syntax and API to bind Word documents to data from data source. It supports
advanced formatting and layout options.
e Document Automation: Automates the process of generating structured documents with increased accuracy.
e Efficient: Provide extended reusability, meaning that the templates can be used with minor modifications, or as it

is time and again, saving both time and effort.
® Multi-platform: Supported on Windows, Linux and macOS.

The DsWord template layout is a pre-defined and formatted Word document. It is used as an input to create the resultant
Word document with required data from data source. In the following sections, you will find DsWord Report Templates being
used in diverse use-cases.

The below examples use short notation for template tags. To know more about short notations, refer Template Tags.
® Use Case 1 - Rental Agreement

In this use case, we have created a template layout in Word for House Rental Agreement which contains placeholder
fields for all the dynamic values like, the landlord's, tenant's and rental information. The value of placeholder fields is
populated by the data source upon template processing. Notice that the currency and date formatters are also used
for relevant fields.

You can also download the Template layout used in below example.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 202

House Rental Agreement

Landlord Information Tenant Information

Name
HlandlordName}}

Address

{flandlordAddrLine1}}, {{landlordAddrLine2}}

{flandlordAddrCity}}, {{landlordAddrState}},
HlandlordAddrPostal}}

United States

Phone Number
HflandlordPhone}}

Rental Information

Name
{{tenantName}}

Email
{{tenantEmail}}

Phone Number
{itenantPhone}}

Number of Occupants
{{itenantOccupants}}

House Rental Address

HrentalAddrline1}}, {{rentalAddrLine2}},

{rentalAddrCity}}, {{rentalAddrState}},
{frentalAddrPostal}},

United States

Start Date of Agreement
{{rentalStart}:format(D])}

End Date of Agreement
{{rentalEnd}:format (D)}

Date of First Payment Due
{{rentalFirstPayment}:format(D)}
Pay Period: {{rentalPayPeriod}}

Rent Amount per {{rentalAmntPerMonth}:format{C]}
Month

Security Deposit {{rentalSecurityDep}:format(C)}

Late Charges {{rentalLateCharge}:format(C)}

Payment Method {{paymentMethod}}

Collected by {{collectedBy}}

The Rental Agreement generated after template processing from the above Template is given below:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

House Rental Agreement

Landlord Information

Tenant Information

203

Name

Jillene Holtaway

Address

725 Barby Junction, 85 Grayhawk Center
San Antonio, Texas, 78220
United States

Phone Number
(192) 472-5503

Rental Information

Name

Nadine Rousell

Email

aibrahim@example.com

Phone Number
(123) 456-7890

Number of Occupants
2

House Rental Address

321 Ken Junction, 12 Blueowl Plaza,
San Antonio, Texas, 33322,
United States

Start Date of Agreement
Thursday, December 31, 2020

End Date of Agreement
Saturday, December 31, 2022

Date of First Payment Due
Friday, January 1, 2021

Pay Period: 1 month

® Use Case 2 - Consulting Agreement

Rent Amount per Month

Security Deposit

Late Charges

Payment Method

Collected by

£3,200.00

£5,000.00

$767.00

Option 2

Nadine Roussel

In this template, a Consulting Agreement has been set up between the Consultant and Client. The generic content of
the agreement is kept static whereas the dynamic content like consultant and client details, dates, scope of work is

incorporated as placeholder fields.

You can also download the Template layout used in below example.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 204

Consulting Agreement

THIS AGREEMENT (the “Agreement”), is entered into on this date {{dateEntered}} by and between:

{{consFirmName}} a registered company located at {{consFirmAddrLinel}}, {{consFirmAddrLine2}}, {{consFirmAddrCity}},
{{consFirmAddrState}}, {{consFirmAddrPostal}} (hereby known as the "Consultant"), and;

{{clientName}}, whose address is at {{clientAddrLinel}}, {{clientAddrLine2}}, {{clientAddrCity}}, {{clientAddrState}]},
{{clientAddrPostal}} (hereby known as the "Client");

WHEREAS, the Client desires to hire the services of the Company to render services to {{scopeOfWork}};

NOW, THEREFORE, for and in consideration of the mutual covenants made by the parties hereto, the Parties to this agreement agree
as follows:

The Services

The Consultant agrees that it shall render services to the Client on matters pertaining to {{scopeOfWork}} (the “Services”).

Compensation and Payment

The Client shall provide payment to the Consultant at the amount of {{paymentAmount}} paid on every {{paymentTerm}}, beginning
the next month of the commencement of this Agreement.

{{retainerAmount}:hbi-equals(0):format{Retainer)}

A retainer of {{retainerAmount}:hbi-equals|0):format(C}} (the "Retainer") is payable by the Client upon execution of this Agreement.

The Consulting Agreement generated after template processing from the above Template is given below:

Consulting Agreement

THIS AGREEMENT (the “Agreement”), is entered into on this date 11/22/20 10:16:00 PM by and between:

Aliquam erat volutpat a registered company located at 1 Oak Drive, Tennyson Plaza, Frederick, Maryland, 21705 (hereby known as
the "Consultant"), and;

Overtop Software, whose address is at 135 Borland Alley, Pie close, Gotharm, New Jersey, 35123 (hereby known as the "Client");

WHEREAS, the Client desires to hire the services of the Company to render services to Vivamus metus arcu, adipiscing molestie,
hendrerit at, vulputate vitae, nisl. Aenean lectus;

NOW, THEREFORE, for and in consideration of the mutual covenants made by the parties hereto, the Parties to this agreement agree
as follows:

The Services

The Consultant agrees that it shall render services to the Client on matters pertaining to Vivamus metus arcu, adipiscing molestie,
hendrerit at, vulputate vitae, nisl. Aenean lectus (the “Services”).

Compensation and Payment

The Client shall provide payment to the Consultant at the amount of 5 paid on every 2 weeks, beginning the next month of the
commencement of this Agreement.

Retainer

A retainer of $500.00 (the "Retainer") is payable by the Client upon execution of this Agreement.

® Use Case 3 - Lease Agreement

This use case depicts a template for Lease Agreement between Lessee and Lessor as two parties. The placeholder
fields are defined for unique information about the parties which is replaced by actual data from data source after
template processing.

You can also download the Template layout used in below example.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 205

Lease Agreement

This Lease Agreement between {{L essor}} (Lessor) and {{L essee}} (Lessee) was executed
on {{ExecDate}:tolongdatestring()}.

For informational purposes, here are the contact details of both parties:

Lessee Information
{{Lesseel} {{LesseePhone}}
{{LesseeEmail}}

Lessor Information
{{Lessor}}
{{LessorEmail}}

{{LessorAddrLine1}}, {{LessorAddrCity}}, f{lLessorAddrState}}, United States
{{LessorPhone}}

PREMISE
The Condominium is located af {{PremAddrLine1}}, {{PremAddrCity}}. {{PremAddrState}}, {{PremAddrPostal}}.

The Lessee will use the condominium for residential living purposes only.

The Lessee and Lessor agree that in the time of this agreement, the condominium is in good condition.

TERM
This Agreement states that the lease term will start on {{Term Start}} and will end on {{TermEnd}}.

For renewals, a new agreement or contract is required and needs to be signed.

PAYMENTS

The monthly payment costs_${{MonthlyFee}}

Payments will be made via {{PaymentMethod}}.

The person who will receive the payment is {{Lessor}} (Lessor).

For late payments which is 5 days after the due date, there'll be an additional charge of §{{LateFee}}

The Lease Agreement generated after template processing from the above Template is given below:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 206

Lease Agreement

This Lease Agreement between Jillene Holtaway (Lessor) and Jane Donahue (Lessee) was executed on Sunday,
November 22, 2020.

For informational purposes, here are the contact details of both parties:

Lessee Information
Jane Donahue (123)098-7654
janed@example.com

Lessor Information
Jillene Holtaway
Jjilleneh@example.com

123 Main 3t., Gotham, New Jersey, United States
(123)4586-7890

PREMISE
The Condominium is located at 39628 Golf Pass, Saint Louis, Missouri, 62169

The Lessee will use the condominium for residential living purposes only.

The Lessee and Lessor agree that in the time of this agreement, the condominium is in good condition.

RM

This Agreement states that the lease term will start on 12/13/20 10:16:00 PM and will end on 12/13/22 10:16:00 PM.

For renewals, a new agreement or contract is required and needs to be signed.

PAYMENTS
The monthly payment costs_$4000.
Payments will be made via Credit Card.
The person who will receive the payment is Jillene Holtaway (Lessor).

For late payments which is 5 days after the due date, there'll be an additional charge of $8000.

® Use Case 4 - Address Labels

In this example, we have created a template layout for address label in Word which contains placeholder fields

for dynamic values like, name, address, state and phone number. These address labels need to be created for various
people of an organization. Hence, the address label template is batch processed so that a separate document is
created for each data source item.

You can also download the Template layout used in below example.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

Name: {{NdMe};
Address: {{address}}
State: {{state}}

Phone MNao: {{contact}}

The Address labels generated after batch processing of template are given below:

Name: JOohn Smith

Address: 9843 Elementum St.

State: Missouri

Phone No: (963) 356-9268

Name: Jasper Carney

Address: 9631 Semper Ave
State: California

Phone No: (906) 217-1470

207

© 2024 MESCIUS inc. All rights reserved.

name: Mark Jordan

Address: 1195 Lobortis Rd.

State: Washington

Phone No: (763) 409-5446

Document Solutions for Word 208

Template Configuration

The template layout can be configured to include various formatting features like bulleted lists, tables, hyperlinks,
conditional formatting etc. This provides a well defined structure and design to the final Word documents.

The data bound fields follow the specified syntax and are defined in mustache braces {{ }} in the template layout.
These fields can also include formatters like date, currency, count, uppercase etc. which are applied in the final
Word document when populated with data from datasource.

A template layout can be configured to include the following:

Template Tags

List

Table

Links

Loop and Nesting
Conditionally Hide Blocks
Formatters

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 209

Template Tags

Template tags are defined in the template layout which define placeholders, range blocks, formatting options etc. and
generate desired Word documents after template processing.

Value Tag
The value tags specify placeholders which are replaced by actual data from the data source after template processing.
These can be defined by using the below syntax:
{{ds.value_path}[:formatter1(args1).formatter2(args2)..formatterN(argsN)]}

® ds - User-defined name of data source

® value_path - Full dot-delimited path from data source to the property name

e formatterX - (Optional) One or more formatters that process the value, Refer Formatters for more details
Example 1: {{ds.cities.name}:toupper()}

Here ds is the name of datasource and cities.name is full value path in data source. The 'toupper' formatter converts
all strings to their upper case representation. After processing, the template tag expands automatically and
produces a list of every city in every object.

Result:

NEW YORK

LOS ANGELES
CHICAGO
HOUSTON

SAN FRANCISCO

Example 2: You can also use multiple formatters in a single tag by chaining them together. In such cases, the result of
one formatter serves as an input to the next formatter. The below value tag hides all records where UnitPrice is less
than 30 and formats the resultant values as currency.

{{ds.UnitPrice}:hide-block-if-less(30):format(C)}
Short Notation for Value Tag

As a single data source can be used in a template, you can also specify the value tag in a short format by omitting the
name of datasource. For example:

® {{cities.name}:toupper()}
® {{UnitPrice}:hbi-less(30):format(C)}

Range Tag

Range tags are used when you want to define a strict area for repeating a section of data object. The content in this
section is copied for every enumerated object. If omitted, the template automatically calculates the start and end of a
repeating block and may produce unwanted results.

Open and close tags can be used to resolve the start and end of a repeating section of data.

If 'ds' is the name of a data set:

e {{#ds}} or {{#ds.enumerable_path}} - Start of a range block
e {{/ds}} or {{/ds.enumerable_path}} - End of a range block

For example, a fully qualified template tag to list all cities in uppercase from the data source will look like:

{{#ds}H{#ds.cities}}{{ds.cities.name}:toupper(){{/ds.cities}}{{/ds}}

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 210

< Note: A Root template is a part of document which contains template tags and is covered by {{#ds}}...{{/ds}} tags,
where ds is name of used datasource. A single Root template is supported per Word document.

2| Note: Sometimes, you may need to exclude some template tags from processing to make them appear as they
are in the document (for example, to show a tag and the result of processing it side by side). DsWord allows you
to do it by adding a backslash (\) immediately before the opening curly braces of the tag. To insert a backslash
and still process the tag, use two backslashes. The backslashes have no special meaning to the template engine
except when immediately preceding a template tag.

Note that when escaping several related template tags, you must escape them all; otherwise, the template engine
will encounter an invalid template construct and throw an exception. For example, to escape the construct "
{{#ds}}{{ds.seas.name}:toupper(H{/ds}}", use "\{{#ds}}\{{ds.seas.name}:toupper()}\{{/ds}}".

State Functions
The IsFirst, IsLast, and Index template state functions enable you to identify the first and last iteration, as well as the
index of the current iteration in a collection.

IsFirst returns true when the index of the current iteration is zero. IsLast returns true when the index of the current
iteration is Count-1 in the collection items. Index returns the index of the current iteration in a collection.

Example: Record {{calc Index(ds)+1}} of {{calc Count(ds)}}: {{ds.name}}{{if IsFirst(ds)}} (first){{else}}{{if IsLast(ds)}} (last)
{endif}}{{endif}}

Here, "ds" is the name of the data source, and "ds.name" is the name field in the data source. "calc Index(ds)+1" gets
the index of the current iteration in the collection and adds one to it. “calc Count(ds)" gets the total number of
iterations in the collection. "if IsFirst(ds)" checks if the current index is the first index of the collection, and "if
IsLast(ds)" checks if the current index is the last index of the collection.

Result:

Record 1 of 5: Australasian Mediterranean Sea (first)
Record 2 of 5: Philippine Sea

Record 3 of 5: Coral Sea

Record 4 of 5: South China Sea

Record 5 of 5: Sargasso Sea (last)

For more information on how to implement state functions, see Collection State.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/report-templates/calculations/data-tpl-coll-state

Document Solutions for Word 211

List
You can use various types of lists in the template layout by specifying the correct syntax as explained below:

Bullet List

To generate output data in bullet list structure, add a bullet to the template tag by using 'Bullets' button in the
template.

— e e =— ==
B— v I— w O— == =

==

Paragraph

|
1]
il
Il

i
7

For example, consider the following sample data:

JSON
[

""product"": ""Canon"",
""id"": ""OOSO""

""product"": ""Bose"",
""id"": vl"9809un

n "prOdUCt" n. n "Redmi" nw ,
""id"": ""5643""

By using above data as data source, the template tag on the left will generate the bulleted list data, as displayed on
the right:
* {{product}} {{id}} s ® Canon 0050
* Bose 9809
* Redmi5643

Number List

To generate output data in numbered list structure, add a number to the template tag by using ‘Numbering' button in
the template.

".— 1— 1—
F— ¥ 2T a__T
- — 3

il
Il
il
1]

h= .
,*,:

1tz

i
Il
4

Paragraph

For example, consider the following sample data:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 212

JSON

""product"": ""Canon"",
mridtt: "rooso"”

}y

{
""product"": ""Bose"",
mridtt: "rogogn"

}y

{
""product"": ""Redmi"",
mridtt: ""5643""

By using above data as data source, the template tag on the left will generate the numbered list data, as displayed on
the right:

1. {{product}} {{id}} e 1. Canon 0050
2. Bose 9809
3. Redmi 5643

MultiLevel List

To generate output data in multilevel list structure, add multiple levels to the template tag by using ‘Multilevel List'
button in the template.

=A== IR AaBbCcDc| AaE

All =

For example, consider the following sample data of different companies, their revenue and cities which generate the
maximum revenue:

JSON
[

""company"": ""Amazon"",
""percentOfRevenue"": ""28.2%"",
""cities"": [
{""name"": ""Delhi""},
{""name"": ""Bangalore""},
{""name"": ""Mumbai""}

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

""company"": ""Flipkart"",
""percentOfRevenue"": ""11.5%"",
""cities"": [
{""name"": ""Bangalore""},
{""name"": ""Delhi""},
{""name"": ""Hyderabad""}
]
by
{
""company"": ""Snapdeal"",
""percentOfRevenue"": ""4.29%"",
""cities"": [
{""name"": ""Delhi""},
{""name"": ""Hyderabad""},
{""name"": ""Kolkatta""}

213

By using above data as data source, the template tag on the left will generate the multilevel list data, as displayed on

the right:

1. {{company}} —{{percentOfRevenue}}
s lcities.name}} —-

© 2024 MESCIUS inc. All rights reserved.

Amazon— 28.2%
¢ Delhi

* Bangalore

¢ Mumbai
Flipkart —11.5%
o Daelhi

» Bangalore

* Hyderabad
Snapdeal — 4.29%
* Delhi

* Hyderabad

» Kolkata

Document Solutions for Word 214

Table

Tables help in organizing a large amount of data in a well structured manner. You can generate data in regular as well
as dynamic tables in Word documents by using Report Templates in DsWord.

Add Table

To generate output data in a tabular form, insert a Table in the template layout by using 'Insert Table' option in the
template.

Insert Design Layout
i : '-_(i) Shapes ~
%Elcuns

Table Pictures

- e

5x2 Table

I

e S S R —

Consider the following sample data of a school, its contact details and a few of its students:

JSON
{
""school"": {
""name"": ""Montessori"",
""email"": ""contact@montessori.com""
by
""students"": [
{
""name"": ""Richard"",
""grade"": ""8"",
""eyecolor"": ""Blue"",
""weight"": ""40"",
""phone"": "" (206) 854-9798""
b,
{
""name"": ""Jared"",
""grade"": ""g"",
""eyecolor"": ""Financial Department"",
""weight"": ""45"",
""phone"": "" (206) 598-1259""
by
{
""name"": ""Natalie"",
""grade"": ""7"",
""eyecolor"": ""Marketing Department"",
""weight"": ""38"",
""phone"": "" (206) 789-1598""

by
{

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 215

""name"": ""Angela"",

""grade"": ""9"",

""eyecolor"": ""Financial Department"",
""weight"": ""42"",

""phone"": "" (206) 784-1258""

By using above data as data source, the below template layout will generate the corresponding output:
Students at {{school.name}}

Email: {{school.email}}

MName Grade Eye Color Weight Phone
{{students.name}} {{students.grade}} {{students.eyecolor}} {{students.weight}} {{students.phone}}

1

Students at Montessori

Email: contact@montessori.com

Name Grade Eye Color Weight Phone

Richard 8 Blue 40 (206) 854-9798
Jared 8 Brown 45 (206) 598-1259
Natalie 7 Black 38 (206) 789-1598
Angela 9 Hazel 42 (206) 784-1258

Add Table with Repeating Rows

To generate output data in a table with repeating rows, insert a Table in the template layout by using 'Insert Table' in
the template and add the number of rows you want to repeat for the same object. Consider the following sample data
of a few electronics with their revenue and area of sale:

JSON
[

""name"": ""Canon 0050"",
""area"": ""North America"",
""Revenue" ": " "$92800" "

b

{
ll"name" ": " llBose 9809" ll,
""area" ": " "New York" ",

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 216

""Revenue"": ""$78900""
b
{
""name"": ""Redmi 5643"",
""area"": ""Chicago"",
""Revenue"": ""$57800""

by

The template tags for the properties of same object are defined in two rows. Hence, the generated output repeats
both rows for each object. The below template layout will generate the corresponding output as displayed:

Name Area
{{name}} {{areaj}
Hrevenue}}

Name Area

Canon 0050 North America
592800

Bose 9809 New York
578900

Redmi 5643 Chicago
557800

Add Dynamic Table
To create dynamic tables which render the table data automatically, you need to define a two-dimensional array which

can be added in a single template tag. Consider the following sample data which specifies the time to take medicines
for different medical reasons.

JSON

—_—

""myArray"": [
[
""Fever"",
""Wake up"",
""Fever only""

""Cough"ll,
""After meal,Before meal,
""Nausea only""

" Hcold" " ,
""Before sleep"",
" HRequired" "

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 217

The array specified in template tag replicates the data dynamically in table rows and columns. The below template
layout will generate the corresponding output:

Fever Wake up Fever only
Cough After meal, Before meal Nausea only
Cold Befare sleep When required

Add Table Columns Dynamically

Similar to dynamic tables, you need to define a two-dimensional array to add table columns dynamically. Consider the
following sample data of a school and its students. Notice that the metadata property is a two-dimensional array.

JSON
{
""company"": ""Montessori"",
""contacts"": {
""website"": ""http://montessori.com"",
""support"": ""contacts@montessori.com"",
""sales"": ""sales@montessori.com""
b
""students"": [
{
""name"": ""Richard"",
""metadata"": [

[

n "Monitor" " ,
""Grade 10""[
""(206) 854-9798""

""name"": ""Jared"",
""metadata"": [
[
""Head Boy"",
""Grade 12"",
""(206) 598-1259""

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

""name"": ""Natalie"",
""metadata"": [
[
""Prefect"",
""Grade 10"",
""(206) 789-1598""

""name"": ""Angela"",
""metadata"": [
[
""Head Girl"",
""Grade 12"",
""(206) 784-1258""

218

The array specified in template tag creates a new column for each item in the array. The below template layout will

generate the corresponding output:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

{{school}}

Website: {{contacts.website]}

Technical Support: {{contacts.support}}

Sales department: {{contacts.sales}}

Students

219

| {students.name}}

| {{students.metadata}}

l

Montessori

Woebsite: http://montessori.com

Technical Support: contacts@montessori.com

Sales department: sales@montessori.com

Students
Richard Monitor Grade 10 (206) 854-9798
Jared Head Boy Grade 12 (206) 598-1259
Natalie Prefect Grade 10 (206) 789-1598
Angela Head Girl Grade 12 (206) 784-1258
Limitation

Template tags inside collection tags must use only tags from parent-child chain. Access to sibling elements is not

allowed in iterative elements (lists/tables etc)

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 220

Links

While using Report Templates in DsWord, you can also add hyperlinks to Word documents which can navigate to any
specified web URL.

For example, consider a template layout for Document Solutions products which are added in a table.

Document Solutions

Name Description Link
{ids.name}} {{ds.description}} {{ds.linkName}}

A Hyperlink is added to {{linkName}} field by clicking on 'Link" in 'Insert' tab and adding a template tag {{ds.linkURL}}
(here ds is the name of data source), into the Address field as shown below:

Insert Hyperlink ? *
Link to: Text to display: |{{linkMName}} ScreenTip...
Look in: [§Desktop w éa
Existing File
or Web Page A Bookmark...
Current
SLLET Target Frame...
Place in This
Document Browsed
Pages
Create Mew Recent
Document Files
W
Q Address: {ds.linkURL}} ot

E-mail

Address

Consider the following sample data:

JSON
[

"name": "Document Solutions for Word",
"description": "DsWord is a part of Document Solutions that aims to be a complete

solution to program and work with Word documents",

"linkName": "Learn More",
"1inkURL": "https://developer.mescius.com/documents—api-word"
by
{
"name": "Document Solutions for Imaging",
"description": "DsImaging offers imaging API for image processing without using

any external image editor.",
"linkName": "Learn More",
"1inkURL": "https://developer.mescius.com/documents—api-imaging"

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 221

by
{

"name": "Document Solutions for Pdf",
"description": "Document Solutions for PDF handles majority of the PDF related
needs as it conforms to a large part of Adobe PDF specification",
"linkName": "Learn More",
"1inkURL": "https://developer.mescius.com/documents—-api-word"
bo
{
"name": "Document Solutions for Excel, .NET",
"description": "Document Solutions for Excel, .NET Edition is a new small-

footprint, high-performance spreadsheet component that can be used in your server or
desktop applications.",

"linkName": "Learn More",
"1inkURL": "https://developer.mescius.com/documents—api-excel"
bo
{
"name": "Document Solutions for Excel, Java",
"description": "DsExcel Java is a high-performance spreadsheet component that

comes packaged with all the necessary features to help users handle complex
spreadsheet challenges in an efficient way.",
"linkName": "Learn More",

"1inkURL": "https://developer.mescius.com/documents—api-excel-java"

The below output is generated upon template processing which contains hyperlinks to corresponding web pages:

.Document Solutions

Name Description Link
Document Solutions for DsWord is a part of Document Solutions that aims to be a Learn More
Word complete solution to program and work with Word documents

Document Solutions for Dsimaging offers imaging APl for image processing without using | Learn More
Imaging any external image editor.

Document Solutions for P[df = Document Solutions for PDF handles majority of the PDF related | Learn More
needs as it conforms to a large part of Adobe PDF specification

Document Solutions for Document Solutions for Excel, .MNET Edition is a new small- Learn More
Excel, .NET footprint, high-performance spreadsheet compenent that can be

used in your server or desktop applications.
Document Solutions for DsExcel Java is a high-performance spreadsheet component that | Learn More
Excel, Java comes packaged with all the necessary features to help users

handle complex spreadsheet challenges in an efficient way.

2] Note: DsWord supports using template documents containing malformed URI by rewriting them in a valid
manner using MalformedUriRewriter property. To know more, refer Hyperlink.

Limitation

You can add {{ds.linkURL}} as a hyperlink address on a template tag (as explained above) but it is not allowed to
specify any hyperlink inside a template tag.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 222

Loops and Nesting

Report Templates allow you to create repeating objects by specifying one repeating object inside the other. This is
helpful while implementing complex use case scenarios.

For example, the below sample data represents a complex object with a few nested objects and collections for a
student's grade card.

JSON
[
{
""name"": ""Richard"",
""school"": [
{
""name"": ""Montessori"",
""curriculum"": [
{
""category"": ""Dance"",
""achievement"": [
{
""description"": ""Performed in inter-school
events""
}
]
}
1,
""student"": [
{
""subject"": ""English"",
""grade"": ""g"",
""remarks"": ""Good pick-up but there is scope of

improvement in grammar""

}

The template layout contains a table containing placeholder fields for the subject, grade and its remarks. It also
defines nested fields for Co-Curricular activities and their respective achievements.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 223

{{school.name}}

Grade Card:
{{name}}

{{school.student.subject}} {{school.student.grade}}
{1 school.student.remarks}}

Co-Curricular Activities:

s {{school.curriculum.categoryl}
o 1ischool.curriculum.achievement.description}}

The output of above template layout is shown below. The final Word document will contain repeated data for
different students, if provided in the data source.

Montessori

Grade Card:

Richard
Subject Grade
English &
Good pick-up but there is scope of improvement in grammar
Maths 9.5

Great speed and accuracy. Tries to solve complex problems

Co-Curricular Activities:

* Dance
o Performed in inter-school events

* Sports
o Average performance in Foothall

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 224

Conditionally Hide Blocks

Conditionally hide blocks allow you to use conditional formatting by hiding the specified blocks of a document. You
can use following conditions to check and then hide or replace the blocks if the specified criteria does not satisfy.

® hide-block-if
o f-endif
e f-else-endif

Hide Specific Block

The hide-block-if condition lets you hide a particular block if it does not meet the mentioned criteria. The possible
block types in a document can be:

Table row
Bullet List item
Chapter
Paragraph

Hide Table Rows

The following example considers sample data of students who belong to a particular society. The conditionally hide
block formatter applies conditional formatting to hide table rows if a student belongs to "Dance" society.

JSON
{

""students"": [

{

""name"": ""Richard"",
""society"": ""Dramatics""
by
{
""name"": ""Natalie"",
""society"": ""Music""
by
{
""name"": ""Angela"",
""society"": ""Dance""

The template layout with hide-if formatter and the result generated after template processing is shown below:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 225

Students

{{students.name}} {{students.society}:hide-block-if-equals(dance)}
Students

Richard Dramatics

Natalie

Music

Hide Bullet List Items

Similarly considering the above example, you can also hide a block containing bullet list item by applying a hide-if
formatter as shown below:

Students

s {{students.name}} {{students.society}:hide-block-if-equals(dance]}

Students

& Richard Dramatics

s Matalie Music

Hide Null Block

This example applies conditional formatting to hide blocks of data containing null values.

JSON

{
""school"": ""Montessori"",
""site"": ""http://montessori.com"",
""contacts"": []

The template layout with hide-if formatter and Word document generated after template processing is shown below.
The Phone field is not displayed in the output as it contains no value.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 226

{{school}}

Site: {{site}}

Phone: {{contacts}! {{contactsk:hide-block-if-empty()}

Montessori

Site: http://montessori.com

Hide Multiple Blocks

The if-endif function lets you hide blocks that do not meet the specified condition. The condition can be created using
template value operands combined with arithmetic, string or logic operations. An example of if-endif condition is
shown below where sea names are generated only if they start with "S".

Data source

// The data source (ocean and sea data from Wikipedia) :

var oceans = new/(]
{
new { name = "Pacific", areaOfWorldOcean = 0.466, volumeOfWorldOcean = 0.501, seas
= newl]
{ new {name = "Australasian Mediterranean Sea" }, new { name = "Philippine
Sea" }, new { name = "Coral Sea" }, new { name = "South China Sea"} }
by
new { name = "Atlantic", areaOfWorldOcean = 0.235, volumeOfWorldOcean = 0.233,
seas = new/l]
{ new {name = "Sargasso Sea" }, new { name = "Caribbean Sea" }, new { name =
"Mediterranean Sea" }, new { name = "Gulf of Guinea" } }
by
new { name = "Indian", areaOfWorldOcean = 0.195, volumeOfWorldOcean = 0.198, seas
= newl([]
{ new {name = "Arabian Sea" }, new { name = "Bay of Bengal" }, new { name =
"Andaman Sea" }, new { name = "Laccadive Sea" } }
y
}i
if-endif

// Filter output using if/endif - print only names starting with an 's':
var p = doc.Body.Paragraphs.Add("{{if StartsWith (UCase (ds.seas.name),\"S\") }}
{{ds.seas.name}}{{endif}}", doc.Styles[BuiltInStyleId.ListParagraphl]);

Hide and Replace with Alternative Block

The if-else-endif function lets you choose between two options based on a condition. Rendering a checked or

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 227

unchecked checkbox depending on a condition is a typical example of if-else condition.

The below example uses the data source used in the section above and shows how to render a block when sea name
starts with 'S, while alternate string is rendered when it does not.

if-else

// Filter output using if/else - print names starting with an 's', else print a
string:

var p = doc.Body.Paragraphs.Add("{{if StartsWith (UCase (ds.seas.name),\"S\") }}
{{ds.seas.name}}{{else}} (\"Sea name doesn't start with S\") {{endif}}",

doc.Styles[BuiltInStyleId.ListParagraphl]);
To view if-else and if-endif functions in action, see StartsWith demo sample.
Z] Note: Template values inside expression are used without usual {{ and }} braces.

Limitations

e if functions cannot be used without at least one datasource added to DataTemplate.
e if-endif and if-else blocks must start and end in the same cell

© 2024 MESCIUS inc. All rights reserved.

https://grapecity.com/documents-api-word/demos/report-templates/calculations/data-tpl-if-starts-with/code-cs

Document Solutions for Word 228

Calculation

Calc Expression

Calculation functions calculate inner expression and write result as output. Currently, a function subset of our Calc
engine has been adapted to use with the template engine and hence the feature supports various binary, unary and
arithmetic operators, aggregate functions, constants, and text functions. The examples below show how to use
aggregate and arithmetic operations to create expressions in Calc function.

Refer to the following example code to calculate the average using multiple arguments:

C#

// Initialize GcWordDocument.
GcWordDocument doc = new GcWordDocument () ;
var ds = new int(] { 1, 2, -2, 16, 7, 5, 4 };

// Bind data source.
doc.DataTemplate.DataSources.Add ("ds", ds);

// Calculate average using multiple arguments.
doc.Body.Paragraphs.Add ("{{ calc Average (ds.value+Sum(ds.value)/2)}}");
doc.DataTemplate.Process|() ;

doc.Save ("complex-expression-inside-average.docx") ;

Refer to the following example code to calculate the sum using a constant:

C#

// Initialize GcWordDocument.
var doc = new GcWordDocument () ;
var ds = new int([] { 1, 2, -2, 16, 7, 5, 4 };

// Bind data source.
doc.DataTemplate.DataSources.Add ("ds", ds);

// Calculate sum using a constant.
doc.Body.Paragraphs.Add ("{{ calc Sum(2 + ds.value)}}");
doc.DataTemplate.Process() ;

doc.Save ("sum-with-constant.docx") ;

Refer to the following example code to calculate the average using two collections inside the aggregate function:

C#

// Initialize GcWordDocument.

var doc = new GcWordDocument () ;

var ds = new int([] { 1, 2, -2, 16, 7, 5, 4 };
var ds2 = new int[] { 5, 3, };

// Bind data source.
doc.DataTemplate.DataSources.Add ("ds", ds);
doc.DataTemplate.DataSources.Add ("ds2", ds2);

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/componentone/docs/services/online-calcengine/built-in-function.html
https://developer.mescius.com/componentone/docs/services/online-calcengine/built-in-function.html

Document Solutions for Word 229

// Calculate average using two collections inside the aggregate function.
doc.Body.Paragraphs.Add ("{{ calc Average (ds.value+ds2.value)}}");
doc.DataTemplate.Process|() ;

doc.Save ("sum-with-two-colls.docx") ;

To view Calc functions in action, see Calculation demo sample.
Format Function

DsWord provides Format function that can calculate inner expressions and output the result in different formats and
cultures. The Format function is used with the Calc Expression.

Refer to the following example code to display the data in date formatting:

C#

// Add dates in date format and different locales.
var paras = doc.Body.Paragraphs;
var p = paras.Add("Date formatting examples:", style);
.ListFormat.Template = list;
= paras.Add("Date with default formatting: {{calc Format (dsDate.value)}}", style);

.ListFormat.LevelNumber = 1;

= paras.Add("Date formatted as ('D', 'en-US'): {{calc Format (dsDate.value, \"D\",
\"en-US\") }}", style);
p.ListFormat.Template = list;

p
P
p.ListFormat.Template = list;
p
p

p.ListFormat.LevelNumber = 1;

p = paras.Add("Date formatted as ('D', 'fr-FR'): ({{calc Format (dsDate.value, \"D\",
\"fr-FR\")}}", style);

p.ListFormat.Template = list;

p.ListFormat.LevelNumber = 1;

p = paras.Add("Date formatted as ('D', 'ja-JP'): ({{calc Format (dsDate.value, \"D\",
\"ja-JP\") }}", style);

p.ListFormat.Template = list;

p.ListFormat.LevelNumber = 1;

+ Date formatting examples:
o Date with default formatting: 4/12/2023
Date formatted as ('D', 'en-US'): Wednesday, April 12, 2023
Date formatted as ('D', 'fr-FR'): mercredi 12 avril 2023
o Date formatted as ('D', 'ja-JP"): 2023&48 12H &R

Refer to the following example code to display the data in number formatting:

C#

// Add number in different fromats and cultures.

p = paras.Add("Number formatting examples:", style);

p.ListFormat.Template = list;

p = paras.Add("Number with default formatting: {{calc Format (dsNum.value)}}",

© 2024 MESCIUS inc. All rights reserved.

https://grapecity.com/documents-api-word/demos/report-templates/calculations

Document Solutions for Word 230

style);

p.ListFormat.Template = list;

p.ListFormat.LevelNumber = 1;

p = paras.Add("Number formatted as ('C', 'en-US'): {{calc Format (dsNum.value, \"C\",
\"en-US\") }}", style);

p.ListFormat.Template = list;

p.ListFormat.LevelNumber = 1;

p = paras.Add("Number formatted as ('C', 'fr-FR'): {{calc Format (dsNum.value, \"C\",
\"fr-FR\") }}", style);

p.ListFormat.Template = list;

p.ListFormat.LevelNumber = 1;

p = paras.Add("Number formatted as ('C3', 'ja-JP'): {{calc Format (dsNum.value,
\"C3\", \"ja-JP\")}}", style);

p.ListFormat.Template = list;

p.ListFormat.LevelNumber = 1;

¢+ Number formatting examples:

o Number with default formatting: 123.456
Number formatted as ('C', 'en-US"); $123.46
Mumber formatted as ('C, 'fr-FR"): 123,46 £

o Number formatted as ('C3", "ja-IP'): ¥ 123.456

Refer to the following example code to display the data in expression formatting:

C#

// Add expressions in different formats.

p = paras.Add("Expression formatting examples:", style);

.ListFormat.Template = list;

= paras.Add ("Numeric expression: {{calc Format (dsNum.value / 2)}}", style);
.ListFormat.Template = list;

.ListFormat.LevelNumber = 1;

= paras.Add ("Boolean expression: {{calc Format (IsFirst (dsNum.value))}}", style);

.ListFormat.Template = list;

s ' '8 ' T T T

.ListFormat.LevelNumber = 1;

s Expression formatting examples:
o Mumeric expression: 61.728
o Boolean expression: True

Limitations

® Calc functions cannot be used without at least one datasource added to DataTemplate.

® Function names are reserved and cannot be used inside data sources. This limitation is case in-sensitive and
limits only simplified names. So if you have datasource field ds.count, you can use it as {{calc ds.count*5}}. Calc
Engine fails to process if you use it as {{calc count*5}}.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 231

e When multiple collections of different lengths are used at the same level of expression, the engine will
determine the minimal length of the used collections and use it for both collections. In the code example
above, both collections ds and ds2 are used "at the same level" in the expression. So, only two elements from
both collections will be used, as 2 is Min(ds.Length, ds2.Length).

Z Note:

e Template values inside expression are used without usual {{ and }} braces.
® |n many cases, result type is double, even if original type was integer.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 232

Formatters

DsWord supports various kinds of formatters in Report Templates which allow you to format the Word document in a
structured manner. You can apply any input formatting to generate the desired output. For example, hiding some
piece of information based on a condition, displaying strings in upper or lower case, inserting an image, displaying
date time in the specified format etc.

Range Formatters

Range formatters can be used to hide a block of data if an enumerable collection meets the formatter requirements.
These are mentioned below along with their short versions:

® hide-block-if-equals() OR hbi-equals()
e hide-block-if-contains() OR hbi-contains()
® hide-block-if-empty() OR hbi-empty()

The collections of standard C# types can be only formatted by using hbi-contains/hbi-equals range formatters.

Example: {{ds.countries}:hbi-equals("England")}
Block Hiding Formatters

These formatters can be used to hide a block of data if the value in a block meets the condition. These formatters are
mentioned below along with their short versions:

hide-block-if-equals() OR hbi-equals()
hide-block-if-greater() OR hbi-greater()
hide-block-if-less() OR hbi-less()
hide-block-if-contains() OR hbi-contains()
hide-block-if-starts() OR hbi-starts()
hide-block-if-ends() OR hbi-ends()
hide-block-if-empty() OR hbi-empty()
hide-block-if-not-equals() OR hbi-not-equals()
hide-block-if-not-contains() OR hbi-not-contains()
hide-block-if-not-starts() OR hbi-not-starts()
hide-block-if-not-ends() OR hbi-not-ends()

Example: {{ds.year}:hide-block-if-equals("2020")}
Value Formatters

Value formatters can be used to format the value of template tags. You can use these with or without parameters:

e format() - Default. If applied on a date, will format as short date string "d", numeric types will be formatted as

g
format(format) - Formats the value using the specified format string, e.g. "format(N2)"

substring(index) - Returns the specified substring of the value

substring(index,length) - Returns the specified substring of the value

join(separator) - Joins array values using the specified separator

bool(yes,no,maybe) - Converts a boolean to a 'yes'/'no'/'maybe’ values (‘maybe' is optional and is used if the
value is null)

e empty(default) - If the value is null, empty or empty array, returns 'default’

For example:

Sample Data Template Tag Output

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

233

{ Name= "Richard Clark"} {{Name}:substring(5)}

Clark

String Formatters

String formatters can be used to format string values:

length - Gets the number of characters in the current string.

tolower - Returns a copy of this string converted to lowercase.

toupper - Returns a copy of this string converted to uppercase.

trim - Removes all leading and trailing white-space characters from this string.
gethashcode - Gets the hash code of this string.

For example:

Sample Data Template Tag

Output

{ cities = new[] {name = "China"}}; {{cities.name}:toupper()}

CHINA

Date and time formatters
The below mentioned formatters are applicable to DateTime and DateTimeOffset:

date - Date component with zeroed time

day - Day of the month

dayofweek - Day of the week

dayofyear - Day of the year

hour - Hour component of the DateTime

millisecond - Millisecond component of this DateTime
minute - Minute component of this DateTime

month - Month component of this DateTime

second - Second component of this DateTime

ticks - Number of ticks representing this DateTime
timeofday - Time of day

year - Year component of this DateTime

add - Adds TimeSpan to this DateTime

subtract - Subtracts TimeSpane from this DateTime
tofiletime - Converts this DateTime to a Windows file time

The below mentioned formatters are applicable to DateTime:

gethashcode - Hash code of this DateTime.

tolongdatestring - Long string date representation of this DateTime.
tolongtimestring - Long string time representation of this DateTime.
tooadate - OLE Automation date representation of this DateTime.
toshortdatestring - Short string date representation of this DateTime.
toshorttimestring - Short string time representation of this DateTime.
tofiletimeutc - Converts the value of this DateTime to a Windows file time.

For example:

Sample Data Template Tag

Output

{ Timestamp= "2020-04-21T16:15:45-08:00"} {{TimeStamp}:year()}

2020

Image Formatters

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 234

Image formatters convert a value to an image and inserts it into the document. The value must be of one of the
following types:

® A byte array containing image data

® A System.lO.Stream object that can be used to read image data

® A System.Drawing.Image object

e A string that can be converted to an absolute file URI, or containing Base64-encoded image data

Formatters:

® image(width, height) - Inserts the image with the specified width and height

® image() - If the image is inside a shape, it is stretched to fill the shape. Otherwise it is inserted with its original
width and height

® image(keepratiofitheight|fitwidthlfitsize|fitsizelim) - Fits the image into the host shape using a specified fitting
strategy

® keepratio - Stretches the image to fit the host shape, preserving the image aspect ratio

e fitheight - The height of the host shape is adjusted so that the image fills the shape, preserving the image
aspect ratio

e fitwidth - The width of the host shape is adjusted so that the image fills the shape, preserving the image aspect
ratio

e fitsize - Fits the size of the host shape to the size of the image

e fitsizelim - Like fitsize but does not increase the size of the shape

Example: {{ds.value}:image(100,100)}

Z] Note: Image formatters use System.Drawing.Image class. This works out of the box on Windows, but requires
installation of additional shared libraries on Linux and macOS:

® Linux:

sudo apt-get update

sudo apt-get install libc6-dev libgdiplus -y
® macOS

brew install mono-libgdiplus

Type Conversion Formatters
As the name suggests, the type conversion formatters let you convert the input types into numeric type data. These
formatters are helpful in conversion of strings that hold numeric data in the JSON data source.
Formatters:
® todouble(optional_string) - Converts the input type to a double value.
® tobool(optional_string) - Converts the input type to a bool value.

] Note: If conversion fails, then the optional_string parameter is converted. In case the optional string also
cannot be converted, then the optional string itself is returned as output.

Limitations:

Culture-specific bool conversion works only with user-defined types because conversions are implemented using
Convert API. For instance, "true" or "True" strings are converted to true regardless of Culturelnfo setting. That is,

® when numeric type is used as data source, 0 is converted to False and any other number except 0 is converted
to True.

® when string type is used as data source, only "true", "True", "false", and "False" strings are converted to bool
regardless of culture. Any other string, including "0" and "1" are not converted. This rule is applicable to
optional_string parameter as well.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 235

For example:
Sample Data Template Tag Output
{"-2","32","16", "5,45", "12,39" } {{ds.value}:todouble():hbi-less(7)} 32
16
12,39
{d = "samplestring" } {{ds.d}:tobool(false)} False

Miscellaneous Formatters:

Report Templates also support following formatters:

® length - Gets the total number of elements in all dimensions of this array. Example: {{ds.countries}:length()}
® count - Gets the number of elements in this collection. Example: {{ds.countries}.count()}

Example: {{ds.countries}:.count()}

I Note: Chars like '{''},":" are allowed inside formatter parameters but only when paired with '\' so format({x:y})

should be written as format(\{x\:y\}). This is due to the regex nature of engine.

| Note:

DsWord uses "not" instead of "!" for negative checks. The use of "!" will throw an exception when
processing the template.

For example: {{if not isLast(ds.companyKeywordList)}}

Formatters cannot be applied to tags inside a conditional template’s calc and if blocks.

For example: ds.tag:toupper() cannot be used as {{if ds.tag:toupper() = "XXX"}} and {{calc ds.tag:toupper()
)

Functions cannot be used outside conditional template definitions.

For example: {{#ds}}{{ToUpper(ds.tag}}}}{{/ds}}.

The short notation will create all necessary range tags automatically. If the user wants to inspect such
auto-generated tags, user should use DataTemplate.DebugExpandTemplate API. It is useful when the user

wants to know why and how the template structure was auto-generated in an unexpected way.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 236

Restart List Formatter

DsWord provides 'restart' formatter in Report Templates which can be used for numbered lists to make them restart
on each iteration within a template range. The template range here refers to a range where a template tag starts with
a '# and ends witha '/'.

The below example explains the usage of 'restart' formatter when two numbered lists are used. As can be observed
from the output, the numbered list is not restarted where the formatter itself is used, rather it is restarted on the inner
numbered list.

Template Tags Output (Template processing using a datasource)
1. {{#companies}.restart()H{{companies.id}} 1. Company A
a. {{companies.items.id}}{{/companies}} a. Milk
b. Eggs
2. Company B
a. Steel

b. Aluminium
3. Company C
a. Wool

b. Cotton

The below example explains the usage of 'restart' formatter with 'all' parameter (optional) and two numbered lists. As
can be observed from the output, the numbered list is restarted at both levels, with each iteration.

Template Tags Output (Template processing using a datasource)
1. {{#companies}:restart(all)}{{companies.id}} 1. Company A
a. {{companies.items.id}}{{/companies}} a. Milk
b. Eggs
1. Company B
a. Steel

b. Aluminium
1. Company C

a. Wool

b. Cotton

The below example shows how to create a numbered list of oceans with a numbered list of seas unders its listing.
Here, the numbered list of seas is restarted on each iteration by using the 'restart' formatter. The below image shows
the template tags used inside the template. You can also download the Template layout here.

1. {{#ds}restart()}H{{ds.name}} Ocean:

a. {{#ds.seasiH{ds.seas.namel{/ds.seas}Hi/ds}}

The below code example loads the above template and processes it using a JSON data source:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

C#

var doc = new GcWordDocument () ;
//Load template
doc.Load ("RestartFormatter [Template] .docx") ;

//Add datasource
var oceans = File.OpenRead("oceans.json");
doc.DataTemplate.DataSources.Add ("ds", oceans):;

//Process template
doc.DataTemplate.Process() ;
doc.Save ("RestartListFormatter.docx") ;

The output of above code example will look like below:

1. Pacific Ocean:

a. Australasian Mediterranean Sea
b. Philippine 5ea

c. Coral Sea

d.

South China Sea
2. Atlantic Ocean:

Sargasso S5ea
Caribbean Sea
Mediterranean Sea
Gulf of Guinea

o o T

3. Indian Ocean:

Arabian Sea
Bay of Bengal
Andaman Sea

a 0 T o

Laccadive Sea

4, Southern Ocean:

Weddell Sea
Somov 5ea
Rilser-Larsen Sea
Lazarev Sea

=TI =

5. Arctic Ocean:

Barents Sea
Greenland Sea
East Siberian Sea

e o T w

Kara S5ea

© 2024 MESCIUS inc. All rights reserved.

237

Document Solutions for Word 238

Sequence and Follow Formatter

Sequence and Follow formatter can be used to co-iterate the data from different datasources, meaning that the data
from first datasource should contain only one iteration of data from the another datasource. To understand
this better, lets assume we have two datasources:

numbers = new[] {new {id =1}, new{id =2}, new{id =3}, new{id =4}}
letters = new[] { new { id = "Apple" }, new { id = "Banana" }, new { id = "Orange" }, new { id = "Mango" } }

After using a template layout and processing it, the output will look like:

Without Sequence and Follow Formatter With Sequence and Follow Formatter
1 Apple 1 Apple

1 Banana 2 Banana

1 Orange 3 Orange

1 Mango 4 Mango

2 Apple

2 Banana

...... so on

The sequence and follow formatter can be used within a template range where a template tag starts with a '#' and
ends with a '/'. The syntax of the formatters is:

® seq(unique_id)/sequence(unique_id)
e follow(unique_id)

Here, the unique_id is an alias name which is bound to the template range containing the sequence formatter. The
alias name should be unique across the template layout.

Z] Note: The sequence formatter can be written as 'sequence’ or 'seq'.

The usage of sequence and follow formatters should be done together to observe their intended behavior. The
sequence formatter alone does not affect anything in the template range. However, when used with the follow
formatter, it produces strictly one copy and data index of data in the follower collection. A usage example of both
formatters in a template range:

{{#numbers}:seq(numi{numbers.id}}{{#letters}.follow(num)}{{letters.id}}{{/letters}H{{/numbers}}

The following example shows how to use sequence and follow formatters to iterate only once over the data in two
different datasources. The below image shows the template tags used inside the template. You can also download the
Template layout here.

. {{#nums}:Eeql:5&q1}|}{{num5.num}}|- H{#ds}h:follow(seql)Hids.namel{{/ds}H{/nums}}

The below code example loads the above template and processes it to save the final Word document:

C#

var doc = new GcWordDocument () ;

doc.Load ("SegFollowerFormatter.docx") ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

var sequence = (@"[
{ ""num"": ""First"" },
{ ""num"": ""Second"" },
{ ""num"": ""Third"" },
{ ""num"": ""Fourth"" },
{ ""num"": ""Fifth"" },
{ ""num"": ""Sixth"" },
{ ""num"": ""Seventh"" },
{ ""num"": " "Eights" " },
{ ""num"": ""Ninth"" },
{ ""num"": ""Tenth"" }

1"
// Add data source

doc.DataTemplate.DataSources.Add ("nums", sequence);

// Add second JSON data source

var oceans = File.OpenRead("oceans.json");
doc.DataTemplate.DataSources.Add ("ds", oceans):;

doc.DataTemplate.Process() ;
doc.Save ("SegFollowTemplate.docx") ;

The output of above code example will look like below:

s First - Pacific

= Second - Atlantic
& Third - Indian

* Fourth - Southern
= Fifth - Arctic

239

You can download the 'oceans.json' data source used in the above example by downloading the 'Sequence and

Follow formatters' demo from here.

Z Note: If the number of items in sequence and follow ranges are different, the template engine will stop when it
reaches the end of the shorter of the two ranges. In other words, the number of repetitions will be the minimum

of the two ranges' lengths.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/features/report-templates/data-tpl-sequence/code-cs

Document Solutions for Word 240

Block Behavior Formatters

Block behavior formatters allow you to modify the default behavior when rendering a data range (a collection of data items). DsWord provides two block
behavior formatters:

® paragraph-block-behavior(), pbb(): When applied to a start range tag inside a table cell, it causes the range blocks to repeat as separate
paragraphs inside that single cell rather than repeating each block as a table row. This formatter cannot be used anywhere else. The end range tag
must appear inside the same cell.

e run-block-behavior(), rbb(): When applied to a start range tag, it causes the range blocks to repeat as runs within the same paragraph rather than
separate paragraphs.

Paragraph block behavior (paragraph-block-behavior, pbb) formatter
Paragraph block behavior formatter is helpful in rendering a range of data or list of items, as a block inside a single table cell. It renders the range of data or

items as a vertical list in the single cell of a table. This formatter is applicable only in the case of table cells. The following table demonstrates the difference
in generated output without the pbb and with it:

Without pbb With pbb
Template Tags {t#ds.seas}H{ds.seas.name}}{{/ds.seas}} {{#ds.seas):pbb()}{{ds.seas.name}}{{/ds.seas}}
Pacific: Pacific
Australasian Mediterranean Sea<< Australasian Mediterranean Sea+ <
Philippine Sea<’ € Philippine Sea¢
Coral Sea’ € Coral Sea
South China Sea< & South China Sea<’
Output
Atlantic Atlantics
Sargasso Sea<’ & Sargasso Sea
Caribbean Seas Caribbean Sea
Mediterranean Seac« Eﬁ?ltigaﬁean?»ea-
Gulf of Guinea : ult of Guinea
C#

// Add a list for oceans, and a nested table for seas:
doc.Body.Paragraphs.Add (" {{#ds}}{{ds.name}}", doc.Styles[BuiltInStyleId.ListParagraphl]);

var table = doc.Body.Tables.Add(1l, 1);
table.Style = doc.Styles[BuiltInStyleId.GridTablelLightAccentl];
var cell 11 = table[0, 0];

//reuse first paragraph of the cell and define seas range with pbb() formatter.
//This formatter force range to be expanded in single cell, instead of generating row per each item.
cell 11.GetRange () .Paragraphs.First.GetRange () .Runs.Add (" {{#ds.seas}:pbb()}{{ds.seas.name}}{{/ds.seas}}");

//close parent range #ds.
doc.Body.Paragraphs.Add ("{{/ds}}");

Limitations

® A range defined with a paragraph block behavior formatter must start and end in the same table cell.

e If pbb range contains inner ranges, those are converted to pbb ranges too, unless they are already defined as run-block-behavior(rbb) ranges. This
rule is not applicable to ranges in inner table. That is, if inner table is defined inside a pbb range, its ranges do not automatically inherit pbb behavior.

® In case of sibling, that is, a template range defined at same level in their parent range, following rules are applied:

o Siblings of any type are valid if it does not include cell where pbb template is defined. If previous sibling is formatted as rbb or pbb in same
cell, then pbb range is allowed to be the next sibling. Otherwise, template is considered malformed and exception
InvalidTemplateStructureException is thrown.

o If previous sibling is defined inside inner table of a cell, any type of siblings are allowed.

Any type of next siblings are allowed.
o If next sibling in cell is rbb or default, we check the location where it is defined and template is considered malformed if this sibling is defined
as end of pbb sibling in the same paragraph.

o

Run block behavior (run-block-behavior, rbb) formatter

Run block behavior formatter causes the range blocks (data items in a range) to repeat as runs inside the same paragraph rather than separate paragraphs.
The following table demonstrates the difference in generated output without the rbb and with it:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 241

Without rbb With rbb
Template Tags {{#ds.seas}}{{ds.seas.name}} ; {{/ds.seas}} {{#ds.seas}:rbb()}{{ds.seas.name}} ; {{/ds.seas}}
Pacific Pacific

Australasian Mediterranean Sea ; Australasian Mediterranean Sea ; Philippine Sea ; Coral Sea ; South China Sea ;

Philippine Sea ;
Coral Sea ; Atlantic

South China Sea ; Sargasso Sea ; Caribbean Sea ; Mediterranean Sea ; Gulf of Guinea ;

Output
Atlantic
Sargasso Sea ;
Caribbean Sea ;
Mediterranean 5ea ;
Gulf of Guinea ;
C#

// Add a list for oceans, and a nested table for seas:
doc.Body.Paragraphs.Add (" {{#ds}}{{ds.name}}", doc.Styles[BuiltInStyleId.ListParagraphl]);

//Add new paragraph to define seas range with rbb () formatter.

//This formatter force range to be expanded in single paragraph, instead of generating new paragraph
//per each item.

doc.Body.Paragraphs.Add ("{{#ds.seas}:rbb () }{{ds.seas.name}} ; {{/ds.seas}}");

//close parent range #ds.
doc.Body.Paragraphs.Add ("{{/ds}}");

Limitations

® Range, defined with rbb formatter, can be defined only in single paragraph.
e If rbb range contain inner ranges, they are converted to rbb ranges too, unless they already are rbb ranges.
® pbb range can not be defined inside an rbb range.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 242

Data Source Binding

Once the template layout is created, it needs to be bound to a data source to populate actual data in the Word
document upon template processing. You can add a data source by using DataSources property of DataTemplate
class.

DsWord supports the following data sources in Report Templates:
DataTable

A single table which has collection of rows and columns from any type of database.
Template syntax

[Alias of data source].[Column name]

For example:

{{ds.ID}}

{{ds.Name}}

Bind DataTable datasource

C#

var datasource = new System.Data.DataTable()
datasource.Columns.Add (new DataColumn ("ID", typeof (Int32)));
datasource.Columns.Add (new DataColumn ("Name", typeof (string)));
datasource.Columns.Add (new DataColumn ("Score", typeof (Int32)));
datasource.Columns.Add (new DataColumn ("Team", typeof (string)));
//Add data source

document.DataTemplate.DataSources.Add ("ds", datasource);

DataSet

A collection of one or more DataTables from any type of database.
Template syntax

[Alias of data source].[Table name].[Column name]

For example:

{{ds.Table1.ID}}

{{ds.Table2.Team}}

Bind DataSet datasource

C#

var dTablel = new System.Data.DataTable()
var dTable?2 = new System.Data.DataTable();
...//Init data
var datasource = new System.Data.DataSet():;
datasource.Tables.Add (teaml) ;
datasource.Tables.Add (team2) ;
//BAdd data source
document.DataTemplate.DataSources.Add ("ds", datasource);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 243

Custom Object

A user-defined object from user code or serialized object of JSON String, File or XML etc. DsWord Template supports
any data source that can be serialized as a custom object.

Template syntax

[Alias of data source].[Field path]

or

[Alias of data source].[Property path]

For example:

{{ds.Records.Area}}

{{{ds.Records.Product}}

Bind Custom Object datasource

C#

var datasource = new SalesData

{

Records = new List<SalesRecord> ()
}i
var recordl = new SalesRecord
{

Area = "NorthChina",

Salesman = "Hellen",

Product = "Apple",

ProductType = "Fruit",

Sales = 120
bi
datasource.Records.Add (recordl) ;
var record?2 = new SalesRecord
{
Area = "NorthChina",
Salesman = "Hellen",
Product = "Banana',
ProductType = "Fruit",
Sales = 143
i
datasource.Records.Add (record?) ;
...//Init data
//Add data source
document.DataTemplate.DataSources.Add ("ds", datasource);

JSON

JSON objects (or JSON text) can be used as data source in DsWord Report Templates.
Template syntax

[Alias of data source].[Field path]

For example:

{{ds.ID}}

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 244

{{ds.Name}}
Bind JSON datasource

The template engine allows you to add the following object types as JSON data sources:

Newtonsoft.Json.Ling.JToken

Newtonsoft.Json.JsonReader

System.Text.Json.JsonElement

System.Text.Json.JsonDocument

System.ReadOnlyMemory<Byte> (parsed as System.Text.Json.JsonDocument)
System.ReadOnlyMemory<Char> (parsed as System.Text.Json.JsonDocument)
System.ReadOnlySequence<Byte> (parsed as System.Text.Json.JsonDocument)

System.|O.StreamReader (parsed as Newtonsoft.Json.Ling.JToken)

System.|O.Stream (parsed as Newtonsoft.Json.Ling.JToken)

System.String (It can be a JSON formatted string or a file name that contains JSON formatted string. It will
be parsed as Newtonsoft.Json.Ling.JToken. If the string does not contain valid JSON, it will be interpreted as the
path name of a json file).

The below example code shows all the ways in which a JSON datasource can be bound to a template to populate data
in the final Word documents.

C#

// json file as data source

public void JsonFileDataSource ()

{

var doc = new GcWordDocument () ;

doc.Load (@"c:\template.docx");
doc.DataTemplate.DataSources.Add ("ds", @"c:\data.json");
doc.DataTemplate.Process();

doc.Save (@"c:\json.docx") ;

// Jjson string as data source

public void JsonStringDataSource ()

{

var doc = new GcWordDocument () ;

doc.Load (@"c:\template.docx") ;
doc.DataTemplate.DataSources.Add ("ds", "{\"name\": \"David\"}");
doc.DataTemplate.Process();

doc.Save (@"c:\json.docx") ;

// json stream as data source

public void JsonStreamDataSource ()

{

var doc = new GcWordDocument () ;
doc.Load (@"c:\template.docx");
using (Stream stream = File.OpenRead(@"c:\data.json"))
{
doc.DataTemplate.DataSources.Add ("ds", stream);
}
doc.DataTemplate.Process();

doc.Save (@"c:\json.docx") ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 245

// Jjson stream reader as data source
public void JsonStreamReaderDataSource ()
{
var doc = new GcWordDocument () ;
doc.Load (@"c:\template.docx") ;
using (StreamReader reader = File.OpenText (@"c:\data.]json"))
{
doc.DataTemplate.DataSources.Add ("ds", reader);
}
doc.DataTemplate.Process();

doc.Save (@"c:\json.docx") ;

// json document as data source
public void JsonDocumentDataSource ()

{

var doc = new GcWordDocument () ;

doc.Load (@"c:\template.docx");
System.Text.Json.JsonDocument jdoc = System.Text.Json.JsonDocument.Parse ("

{\"name\": \"David\"}");
doc.DataTemplate.DataSources.Add ("ds", jdoc);
doc.DataTemplate.Process();
doc.Save (@"c:\json.docx") ;

// json token as data source
public void JsonTokenDataSource ()

{

var doc = new GcWordDocument () ;

doc.Load (@"c:\template.docx");

Newtonsoft.Json.Ling.JToken jtoken = Newtonsoft.Json.Ling.JToken.Parse ("
{\"name\": \"David\"}");

doc.DataTemplate.DataSources.Add ("ds", Jjtoken);

doc.DataTemplate.Process();

doc.Save (@"c:\json.docx") ;

The template and output for JSON string, document and token code sample above will look like below:

H#dstH{ds.name}ltoupper|)Hi/ds]}

DAVID

List and Array

A list is a collection of hetrogeneous data and elements while an array is a homogeneous collection of elements

ordered in a sequence. In arrays and lists of unnamed entities of primitive types (Type.IsPrimitive = true) and strings,

value of current element is represented by a virtual property named value.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 246

Template syntax

[[Alias of data source].value] OR [#Alias of data source][[Alias of data source].value][/Alias of data source]]
For example:

{{ds.value}} OR {{#ds}}{{ds.value}}{{/ds}}

Bind List and Array datasource

C#

var doc = new GcWordDocument () ;
// Add a simple List<String> as data source:
doc.DataTemplate.DataSources.Add ("dsStrs", new List<string> ()
{
"Pacific",
"Atlantic",
"Indian",
"Southern",
"Arctic",
1)

// Add a simple array as data source:
doc.DataTemplate.DataSources.Add("dsInts", new intf[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 });

// Add a list template so that the data is formatted as a list:
var myListTemplate = doc.ListTemplates.Add (BuiltInListTemplateId.BulletDefault,
"myListTemplate") ;

// Strings (oceans) List:

doc.Body.Paragraphs.Add ("List of Strings (oceans):",
doc.Styles[BuiltInStyleId.Headingl]);

var p = doc.Body.Paragraphs.Add ("{{#dsStrs}}{{dsStrs.value}:toupper()}{{/dsStrs}}",
doc.Styles[BuiltInStylelId.ListParagraphl]);

p.ListFormat.Template = myListTemplate;

Variable

A variable is a number, or a quantity that changes with time and can take different values in different situations.
Template syntax

[Alias of data source]

For example:

{{dsh

Bind Variable datasource

C#
var doc = new GcWordDocument () ;
// Add a variable as data sources:

string str = "Data Record";
doc.DataTemplate.DataSources.Add ("dsConsts", str);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 247

// Add a list template so that the data is formatted as a list:
var myListTemplate = doc.ListTemplates.Add (BuiltInListTemplateId.BulletDefault,
"myListTemplate") ;

// Variable:
doc.Body.Paragraphs.Add ("Variable Data:", doc.Styles[BuiltInStyleId.Headingl]);
var p = doc.Body.Paragraphs.Add ("{{#dsConsts}}{{dsConsts.value}}{{/dsConsts}}",
doc.Styles[BuiltInStyleId.ListParagraphl]);

p.ListFormat.Template

myListTemplate;
Z Note:

o |f template contains a field that does not exist in the bound data source, 'KeyNotFoundException' is
thrown by default. However, this behavior can be controlled by setting MissingFieldsHandling property
of the DataTemplateOptions class. Default value of this property is Strict which results into the
aforementioned exception. To ignore the missing fields, you can set the property to Relaxed.

® When MissingFieldsHandling property is set to Relaxed, the missing range templates are interpreted as
empty ranges. To hide these empty ranges which are exposed as a single element, you can use the hide-
block-if-empty() (hbi-empty()) formatter. For more information about formatters, see Formatters.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 248

Template Validation

When processing a template, there may be instances of errors. It may be difficult to identify all errors at once, and it
may take a long time to fix one error at a time. DsWord provides TemplateError class and Validate method

in DataTemplate class that enable a user to validate the templates in a document, defining which templates are
malformed or wrongly used in the structure. When the user sets Validate to True, it marks erroneous templates in the
document with the error information. When the user sets Validate to False, it only returns a list of errors.

Refer to the following example code to validate the template:

C#

// Initialize GcWordDocument.
var doc = new GcWordDocument () ;

// Add template data source.
doc.DataTemplate.DataSources.Add("ds", new intf[] { 1, 2, 3, 4, 5 });

// Add template tags.
doc.Body.Paragraphs.Add (" {{ds.value}}");
doc.Body.Paragraphs.Add("{{/ds}}");

// Validate the template.
var errors = doc.DataTemplate.Validate (true) .ToList ()

// Save the Word document.
doc.Save ("Validate.docx") ;

Comments v X
T New
lds.value}} r

i/ds1

- Cannot find start of collection "/ds".

21 Movember 2023, 1219

‘ Reply |

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 249

Limitations

Validate method only identifies wrong template grammar and absent datasource path errors.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 250

Walkthrough

Follow the walkthrough, which is a step-by-step tutorial, to understand how to generate Word documents using
Report templates.

® Generate Document with Advanced Layout
® Generate Document using JSON Data Source
® Generate Document using Multiple Data Sources

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 251

Generate Document with Advanced Layout

The Process or BatchProcess method of DataTemplate class can be used to process templates in DsWord and generate Word
documents with advanced layouts.

The Process method processes the template layout by replacing the template tags with actual data from the datasource.
Whereas, the BatchProcess method processes the template layout by iterating over the root items of a data source in a loop
to generate separate documents for each data source item. For example, generating multiple offer letters for different
candidates or airline tickets for different travellers by using the same template layout.

Create a Word Document using Process method

The Process method can be used to process the template layout and save the data to a single Word document. It replaces
the template tags in a document with actual data from data source and generates a final Word Document with desired data.

This following example uses Process method to generate a Word document where a House Rental Agreement containing the
information of landlord, tenant and rental charges needs to be created. The static content in the agreement is generic and
can be used as it is, time and again. The dynamic fields are specified as placeholders and can be updated every time a new
agreement is to be signed. The template layout is created in Word and is populated with actual data after binding with data
source which, in this case, is an XML file.

The below steps describe how to generate a House Rental Agreement using a template in Word. You can also download the
Template layout here.

1. Create a template layout in a Word document and define the following fields:

o Static Fields: Define the static fields in template layout, that is, the fields whose values will remain constant in
the final document. For example header fields and information labels like 'Landlord Information’, ‘Rental
Information’, 'Phone Number’, 'Email’, ‘Rent Amount per Month' etc.

o Bound Fields: Specify the datasource bound fields in mustache braces {{ }} like {{landlordName}},
{{collectedBy}}, {{tenantEmail}} etc.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

252

House Rental Agreement

Landlord Information

Tenant Information

Name
HlandlordName}}

Address

{flandlordAddrLine1}}, {{landlordAddrLine2}}

{flandlordAddrCity}}, {{landlordAddrState}},
HlandlordAddrPostal}}
United States

Phone Number
HflandlordPhone}}

Rental Information

Name

{{tenantName}}

Email

{{tenantEmail}}

Phone Number
{itenantPhone}}

Number of Occupants

{{itenantOccupants}}

House Rental Address

HrentalAddrline1}}, {{rentalAddrLine2}},

{rentalAddrCity}}, {{rentalAddrState}},
{frentalAddrPostal}},

United States

Start Date of Agreement
{{rentalStart}:format(D])}

End Date of Agreement
{{rentalEnd}:format (D)}

Date of First Payment Due
{{rentalFirstPayment}:format(D)}
Pay Period: {{rentalPayPeriod}}

2. Load the template created in above step, in DsWord.
C#

Rent Amount per
Month

Security Deposit

Late Charges

Payment Method

Collected by

GcWordDocument doc = new GcWordDocument () ;

//Load template layout

doc.Load ("RentalAgreement [Template] .docx") ;

{{rentalAmntPerMonth}:format(C]}

{{rentalSecurityDep}:format(C)}

{{rentalLateCharge}:format(C)}

{{pavmentMethod}}

{{collectedBy}}

3. Initialize a DataSet as data source and read data from an XML file. After adding the XML as dataset, add one of the

tables as datasource for the template.
C#

//Initialize DataSet

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 253

var ds = new System.Data.DataSet();

//Read data from xml

ds.ReadXml (Path.Combine ("DsWordTplDataSet.xml")) ;
//Add datasource

doc.DataTemplate.DataSources.Add ("ds", ds.Tables["HouseRentalAgreement"]);
The data source used in this sample (DsWordTplDataSet.xml) can also be downloaded from Resources/data folder of
this project.

4. Process the template by using Process method.
C#

//Process the template
doc.DataTemplate.Process();

5. Save the final Word document.
C#
//Save the final document

doc.Save ("RentalAgreement.docx") ;

The output of the House Rental Agreement is shown as below:

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/use-cases/data-templates/data-tpl-use-cases_2/pdf-cs

Document Solutions for Word

House Rental Agreement

Landlord Information

Tenant Information

254

Name

Jillene Holtaway

Address

725 Barby Junction, 85 Grayhawk Center
San Antonio, Texas, 78220
United States

Phone Number
(192) 472-5503

Rental Information

Name

Nadine Rousell

Email

aibrahim@example.com

Phone Number
(123) 456-7890

Number of Occupants
2

House Rental Address

321 Ken Junction, 12 Blueowl Plaza,
San Antonio, Texas, 33322,
United States

Start Date of Agreement
Thursday, December 31, 2020

End Date of Agreement
Saturday, December 31, 2022

Date of First Payment Due
Friday, January 1, 2021

Pay Period: 1 month

Rent Amount per Month

Security Deposit

Late Charges

Payment Method

Collected by

Create Separate Word Documents using BatchProcess Method

£3,200.00

£5,000.00

$767.00

Option 2

Nadine Roussel

The BatchProcess method can be used to process the template layout and save multiple rows of data into separate Word

documents.

The following example saves data of different employees to separate Word documents. The template layout is created in
Word and is populated with actual data after binding with data source. You can also download the Template layout here.

1. Create a template layout in a Word document and define the following fields:
o Static Fields: Define the static fields in template layout, that is, the fields whose values will remain constant in

the final document. For example Name, Designation, Years of Experience etc.

o Bound Fields: Specify the datasource bound fields in mustache braces {{ }} like {{name}}, {{designation}},

{{experience}} etc.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 255

MName: {{name}}

Designation: {{designation}}}

Department: {{department}}

Years of Experience: {{experience}}

2. Load the template created in above step, in DsWord.

C#

GcWordDocument doc = new GcWordDocument () ;

//Load template layout

doc.Load ("EmployeeData[Template] .docx") ;

3. Add data which will be used as data source by using DataSources method of DataTemplate class.

C#

doc.DataTemplate.DataSources["ds"]

new

by

new

by

new

{

name = "Derek Clark",

designation = "HOD",

department = "marketing",
experience = "23"

{

name = "Jessica Adams",
designation = "Senior Executive",
department = "sales",

experience = "5"

{

name = "Anil Mittal",

designation = "Software Engineer",
department = "development",
experience = "7"

= new object[]

{

4. Process the template by using BatchProcess method and save the Word documents separately.

C#

// produces a document for each root item in the data source collection
int 1 = 0;

doc.DataTemplate.BatchProcess (() =>

{

doc.Save ($"Employee-Data-{++1i}.docx") ;

)

The output of Employee Report Templates is saved to separate documents as shown below:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 256

Employee-Data-1.docx
Mame: Derek Clark
Designation: HOD
Department: markating

Years of Experience: 23

Employee-Data-2 docx

Mame: lessica Adams
Designation: Senior Executive
Department: sales

Years of Experience: 5

Employee-Data-3. docx

Mame: Anil Mittal
Designation: Software Engineer
Department: development

Years of Experience: 7

Limitation

The template layout document with multiple sections is not batch processed correctly. Hence, in case of batch processing,
keep the template layout in a single section only.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 257

Generate Document using JSON Data Source

Report Templates allow you to bind the template with JSON data source by using Add method of IDictionary
interface. The data can be added from a JSON file, stream, string etc. and bound to populate actual data upon
template processing. For more information on different ways to work with JSON data source, refer Data Source
Binding.

The following example takes you through a step by step process to generate a Word document with the list of oceans
provided as a JSON string.

1. Create a template layout in a Word document as shown below. You can also download the Template
layout from here.

List of Oceans

{{#ds}H{ds.seas.namel:toupper()Hi/ds}}

2. Load the template created in above step, in DsWord.
C#
GcWordDocument doc = new GcWordDocument () ;

//Load template layout
doc.Load ("OceansList [Template] .docx");

3. Pass the data in a JSON string.
C#

var oceans = @"[

{

""name"": ""Pacific"",
""areaOfWorldOcean"": 0.460,
""volumeOfWorldOcean"": 0.501,
""seas"": [
{""name"": ""Australasian Mediterranean Sea""},
{""name"": ""Philippine Sea""},
{""name"": ""Coral Sea""},
{""name"": ""South China Sea""}],
bo
{
""name"": ""Atlantic"",
""areaOfWorldOcean"": 0.235,
""volumeOfWorldOcean"": 0.233,
""seas"": [
{""name"": ""Sargasso Sea""},
{""name"": ""Caribbean Sea""},
{""name"": ""Mediterranean Sea""},
{""name"": ""Gulf of Guinea""}1,
by
{
""name"": ""Indian"",

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

""areaOfWorldOcean"": 0.195,
""yolumeOfWorldOcean"": 0.198,
""seas"": [
{""name"": ""Arabian Sea""},
{""name"": ""Bay of Bengal""},
{""name"": ""Andaman Sea""},
{""name"": ""Laccadive Sea""}],
by
{
""name"": ""Southern"",
""areaOfWorldOcean"": 0.061,
""volumeOfWorldOcean"": 0.054,
""seas"": [
{""name"": ""Weddell Sea""},
{""name"": ""Somov Sea""},
{""name"": ""Riiser-Larsen Sea""},
{""name"": ""Lazarev Sea""}],
by
{
""name"": ""Arctic"",
""areaOfWorldOcean"": 0.043,
""volumeOfWorldOcean"": 0.014,
""seas"": [
{""name"": ""Barents Sea""},
{""name"": ""Greenland Sea""},
{""name"": ""East Siberian Sea""},
{""name"": ""Kara Sea""}],

"

4. Add above data as a data source for the template.

C#

doc.DataTemplate.DataSources.Add ("ds", oceans);

5. Process the template by using Process method.

C#

//Process the template

doc.DataTemplate.Process() ;

6. Save the final Word document.
C#

//Save the final document

doc.Save ("List of Oceans.docx");

The output of the above code is shown as below:

© 2024 MESCIUS inc. All rights reserved.

258

Document Solutions for Word 259

List of Oceans
AUSTRALASIAN MEDITERRANEAN SEA
PHILIPPINE SEA
CORAL SEA

SOUTH CHINA SEA
SARGASSO SEA
CARIBBEAN SEA
MEDITERRANEAN SEA
GULF OF GUINEA
ARABIAN SEA

BAY OF BENGAL
ANDAMAN SEA
LACCADIVE SEA
WEDDELL SEA
SOMOV SEA
RIISER-LARSEN SEA
LAZAREY SEA
BARENTS SEA
GREENLAND SEA
EAST SIBERIAN SEA

KARA SEA

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 260

Generate Document using Multiple Data Sources

You can use multiple data sources with Report Templates to generate Word documents upon template
processing. The following example demonstrates how to generate a Word document with the list of car brands
followed by the list of car body styles by using two data sources.

1. Define data in two JSON datasources, containing:

o A list of some popular car makers

o A list of various car body styles
2. Create a new Word document by instantiating the GcWordDocument class.
3. Add both datasources with specified data by using Add method of the IDictionary interface.
4. Add template tags in a paragraph by using Add method of the ParagraphCollection class.
5. Process the template by using Process method and save the final Word document.

C#

{

var makes = "[" +
"{ \"make\": \"Toyota\"™ }," +
"{ \"make\": \"General Motors\" }," +
"{ \"make\": \"Volkswagen\" }," +
"{ \"make\": \"Ford\" }," +
"{ \"make\": \"BMW\" }," +
"{ \"make\": \"Nissan\" }," +
"{ \"make\": \"Hyundai\™ }," +
"{ \"make\": \"Honda\"™ }," +
"{ \"make\": \"Mazda\" }," +
"{ \"make\": \"Jaguar\" }," +
"1

var bodyStyles = "[" +
"{ \"style\": \"Sedan\" }," +
"{ \"style\": \"Coupe\" }," +
"{ \"style\": \"Hatchback\"™ }," +
"{ \"style\": \"SUV\" }," +
"{ \"style\": \"Crossover\" }," +
"{ \"style\": \"Minivan\" }," +
"{ \"style\": \"Pickup\"™ }," +
"{ \"style\": \"Wagon\" }," +
"1

var doc = new GcWordDocument () ;

// Add the data sources
doc.DataTemplate.DataSources.Add ("makes", makes);
doc.DataTemplate.DataSources.Add ("styles", bodyStyles);

// Print the list of some car makes

doc.Body.Paragraphs.Add ("Popular Car Makers",
doc.Styles[BuiltInStyleId.Heading2]);
doc.Body.Paragraphs.Add (" { {#makes}}{{makes.make}} {{/makes}}",
doc.Styles[BuiltInStyleId.ListBullet]);

// Print the list of car body styles

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

doc.Body.Paragraphs.Add ("Car Body Styles",
doc.Styles[BuiltInStyleId.Heading2]);

doc.Body.Paragraphs.Add (" {{#styles}}{{styles.style}}{{/styles}}",
doc.Styles[BuiltInStyleId.ListBullet]);

doc.DataTemplate.Process() ;

doc.Save ("MultipleDataSources.docx") ;

The output of above code will ook like below in the Word document:

Popular Car Makers
* Toyota
* General Motors
= \olkswagen

* Ford

« BMW

* Nissan

* Hyundai
* Honda

* Mazda

* Jaguar

Car Body Styles

= Sedan

= Coupe

= Hatchback

s SUV

* (Crossover

* Minivan

* Pickup

= ‘Wagon
Limitation

While using different datasources, there may be identical paths (like {{ds1.employee.name}} and
{{ds2.employee.name}}). Hence, the fully qualified template tag should be used which includes the name
of datasource. The unqualified tags (like {{employee.name}}) will throw an exception.

© 2024 MESCIUS inc. All rights reserved.

261

Document Solutions for Word 262

Samples

All the DsWord samples are available through the online sample browser. You can browse the source code of samples,
run them on the server, download the generated DOCX and view the generated PDF online, or download individual
samples to build and run on your own system (Windows, Mac or Linux). For more information, see Quick Start,
introductory page for the samples.

If you choose to download the samples, you can run them using following simple steps:

1. Click the Download action on the top right of the sample page.
2. Unzip the downloaded .zip file of sample.
3. Run the sample.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-word/demos/
https://developer.mescius.com/documents-api-word/demos/quick-start

Document Solutions for Word 263

API Reference

This section contains documentation for all the assemblies required to create applications using DsWord.

Assembly Description

DS.Documents.Word | Cross-platform library for creating, analyzing, and modifying Office Word documents without
dependencies on MS Office.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word

Release Notes

Refer to the following release notes for the major releases of the product.

For details about latest hotfixes, see the nuget page.

Breaking Changes

Release Notes for Version 7.1.0
Release Notes for Version 7.0.0
Release Notes for Version 6.2.0
Release Notes for Version 6.1.0
Release Notes for Version 6.0.0
Release Notes for Version 5.2.0.800
Release Notes for Version 5.1.0.790
Release Notes for Version 5.0.0.762
Release Notes for Version 4.2.0.719
Release Notes for Version 4.2.0.715
Release Notes for Version 4.1.0.658
Release Notes for Version 4.0.0.616
Release Notes for Version 3.2.0.548
Release Notes for Version 3.1.0.508
Release Notes for Version 3.0.0.414
Release Notes for Version 2.2.0.310
Release Notes for Version 2.1.0.260

© 2024 MESCIUS inc. All rights reserved.

264

https://www.nuget.org/packages/GrapeCity.Documents.Word/

Document Solutions for Word 265

Breaking Changes

Refer to the breaking changes for specific versions:

Version 5.0.0.762
Version 4.2.0.715
Version 4.0.0.632 (Maintenance)
Version 3.1.0.508
Version 3.0.0.414
Version 2.2.0.310
Version 2.1.0.260

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 266

Version 7.1.0

New Features and Improvements

® When adding an SVG image, a complementary raster copy of the image is also added to the document.

When a CheckBox or a Date content control (with CalendarType.Gregorian) is changed, its appearance is
automatically updated.

Added ImageData.ComplementaryVectorData property: Gets the complementary vector data of the image.
Added VectorGraphicimageData class: Represents the image data of an SVG vector image.

Added WebVideoProperties class: Represents the properties used to show an online video to the user.

Added ImageData.WebVideoProperties property: Gets the properties for displaying an online video to the user.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 267

Version 7.0.0

Important Note

This is the initial release of the DS.Documents.Word package. This package replaces GrapeCity.Documents.Word, and
provides the same functionality, ensures future enhancements, and is backwards compatible with
GrapeCity.Documents.Word. Existing subscriptions will continue to apply to this new package.

New Features and Improvements

Added ContentObject.CanAdd() method to check whether a ContentObject of the specified type can be added
to the current object.
Added ContentObject.CanAddContentControl() method to check whether a ContentControl of the specified
type can be added to the current object.
Added Body.CanAdd() method to check whether a ContentObject of the specified type can be added to the
current body.
Added Body.CanAddContentControl() method to check whether a ContentControl of the specified type can be
added to the current body.
Added Section.CanAdd() method to check whether a ContentObject of the specified type can be added to the
current section.
Added Section.CanAddContentControl() method to check whether a ContentControl of the specified type can
be added to the current section.
Added the following support for picture effects:
o [Picture effects] RecolorType enum: specifies the type of an image color change.
o [Picture effects] ImageEffectType enum: specifies the image effect type.
o [Picture effects] UserColor class: represents an extended color.
o [Picture effects] WebVideoProperties class: represents properties for displaying an online video to the
user.
[Picture effects] ImageEffect class (derived from FormattingBag): the abstract base class for image
effects.
[Picture effects] AlphaBilLevel class: represents an Alpha bi-level effect.
[Picture effects] AlphaCeiling class: represents an alpha ceiling effect.
[Picture effects] AlphaFloor class: represents an alpha floor effect.
[Picture effects] Alphalnverse class: represents an alpha inverse effect.
[Picture effects] AlphaModulation class: represents an alpha modulate fixed effect.
[Picture effects] AlphaModulationComplex class: represents an alpha modulate complex effect.
[Picture effects] AlphaReplace class: represents an alpha replace effect.
[Picture effects] BiLevel class: represents a bi-level (black/white) effect.
[Picture effects] ColorChange class: represents a color change effect.
[Picture effects] ColorReplacement class: represents a solid color replacement effect.
[Picture effects] Duotone class: represents a duotone effect.
[Picture effects] Grayscale class: represents a grayscale effect.
[Picture effects] HslEffect class: represents a hue, saturation, or luminance effect.
[Picture effects] Luminance class: represents a luminance effect.
[Picture effects] Tint class: represents a tint effect.
[Picture effects] ImageEffectList class: represents a list of image effects.
[Picture effects] EmbeddedimageData class: represents embedded image data.
[Picture effects] New members have been added to the PicturePreset enum.
o [Picture effects] New members have been added to the ImageData class.
Updated OpenXml library version to 2.20.
[Picture effects] Blur and FillOverlay classes now derive from ImageEffect (previously they derived directly from
FormattingBag).

[¢]

O O 0O OO OO OO O O O O o0 O0O o0 oo

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 268

Version 6.2.0

New Features and Improvements

Added API supporting Office Math.

Added OMath class: Represents inline math content.

Added OMathParagraph class: Represents math content on its own line as a paragraph. Can contain one or
more OMath instances.

Added OMathStruct abstract base class: Used to represent a mathematical structure inside an OMath instance.
Added Classes derived from OMathStruct: OMathBar, OMathBorderBox, OMathBox, OMathDelimiter,
OMathEquationArray, OMathFraction, OMathFunction, OMathGroupCharacter, OMathLimitLower,
OMathLimitUpper, OMathMatrix, OMathNary, OMathPhantom, OMathPreSubSuperscript, OMathRadical,
OMathSubscript, OMathSubSuperscript, OMathSuperscript.

Added OMathElement class: Used to build specific structures in classes derived from OMathStruct.

Added helper methods to add various types of content to parts of a document. Methods are defined for
different part types (Paragraph, Run, OMath etc.) and ensure that only allowed content types can be added
using these methods. Examples are Paragraph.AddRun(), Cell. AddTable(), OMath.AddHyperlink() etc.

Added Classes containing helper methods to add allowed content: BidirectionalOverride, Body, CanvasShape,
Cell, ControlContent, GroupShape, Hyperlink, OMath, OMathElement, OMathParagraph, Paragraph, Row, Run,
Section, SimpleField, Table, TextFrame.

Added ability to escape template tags: Prepend a valid template tag with a backslash to exclude it from
template processing.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 269

Version 6.1.0

New Features and Improvements

Added support for linked (paragraph and character) styles.

Added DsWordDocument.HidelLinkedCharacterStyles property that hides linked character styles from the
DsWord API, allowing users to use the paragraph part of a linked style pair in place of both styles.

Added StyleCollection.AddLinkedStyle method that adds a pair of linked paragraph and character styles to the
collection.

Added support for 3D effects on shapes and text.

Added BevelType enum that specifies the preset bevel type, which defines the look of a bevel.

Added LightRigType enum that specifies the preset type of the light rig that is to be applied to the scene.
Added LightRigDirection enum that specifies the direction from which the light rig is oriented in relation to the
scene.

Added CameraPreset enum that specifies the preset camera that defines a starting point for common preset
rotations in space.

Added MaterialType enum that specifies the preset material type to give the final look and feel of an object.
Added FontEffectsPreset enum that specifies the built-in font effects preset.

Added ShapekEffectsPreset enum that specifies the built-in shape effects preset.

Added IFixedFormattingBag interface that defines properties and methods for working with inherited and
direct formatting.

Added Point3D class that represents a point in 3D space.

Added Vector3D class that represents a vector in 3D space.

Added Rotation class that represents a rotation in 3D space.

Added Bevel class that represents a bevel on an object face.

Added ColoredLine class that represents a colored line.

Added Backdrop class that represents a plane in which effects, such as glow and shadow, are applied in
relation to the shape they are applied to.

Added Lighting class that represents a light rig associated with an object.

Added Camera class that represents the placement and properties of a camera in a 3D scene.

Added ThreeDScene class that represents a 3D scene effect that can be applied to an object.

Added ThreeDFormat class that represents a 3D format effect that can be applied to an object.

Added TextEffects.ThreeDFormat property that gets the 3D format effect.

Added TextEffects.ThreeDScene property that gets the 3D scene effect.

Added TextEffects.Clean() method that sets all effects to default values.

Added ShapekEffects.Clean() method that sets all effects to default values.

Added IFixedFormattingBag implementation to FillFormat, LineFormatBase, OuterShadow, Reflection, and Glow
classes.

Added ApplyEffectsPreset() method to the Font, Shape, GroupShape, and Picture classes.

Added TextFrameFormat.ThreeDFormat property that gets the 3D format effect.

Added TextFrameFormat.ThreeDScene property that gets the 3D scene effect.

Added TextFrameFormat.FlatText property that indicates whether to keep text out of the 3D scene.

Added state functions: IsFirst(), IsLast(), and Index().

Added Format(expression[, format_string|[, culture]]) calc function.

Added lif(condition, true_expression, false_expression) calc function.

Aggregate calc functions now can have complex arguments, including expressions and function calls.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 270

Version 6.0.0

New Features and Improvements

Added support for reflection effect in Font, Shape, Picture, GroupShape, and CanvasShape using TextEffects
and ShapeEffects classes.

Added support for glow effect in Font, Shape, Picture, GroupShape, and CanvasShape using TextEffects and
ShapekEffects classes.

Added support for blur effect in Shape, Picture, GroupShape, and CanvasShape using ShapekEffects class.
Added support for soft-edge effect in Shape, Picture, GroupShape, and CanvasShape using ShapeEffects class.
Added support for fill-overlay effect in Shape, Picture, GroupShape, and CanvasShape using ShapekEffects class.
Added hide-show blocks depending on conditions like {{if }} a {{else}} b {{endif}}.

Updated report templates to remove paragraphs that are generated using template tags.

Resolved Issues

Fixed issue where format scheme’s images were not serialized while saving documents.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 271

Version 5.2.0.800

New Features and Improvements

Added support for Decimal, DateTime and DateTimeOffset to the primitive types in the report templates.
Added DataSourceDictionary.Add(string, object, Culturelnfo) method in report template to include data source
with an associated culture while parsing and formatting data.

Added shadow effects for text and shapes.

Added BuiltiInShadowld enum that defines the types of built-in shadow effects.

Added PresetShadowType enum that defines the preset shadow types.

Added ShadowBase class that represents shadow effect as an object.

Added PresetShadow class that represents a preset shadow effect as an object.

Added InnerShadow class that represents an inner shadow effect as an object.

Added OuterShadow class that represents an outer shadow effect as an object.

Added TextEffects class that represents a text formatting effect as an object.

Added ShapekEffects class that represents a shape formatting effect as an object.

Added ShapeEffectsList class that represents a set of shape styles effects to be used within a theme.
Added StyleEffects class that represents a reference to shape styles effect of FormatScheme.Effects list.
Added TextEffects property in Font class which gets the text formatting properties.

Added ShapekEffects property in Shape class which gets the shape formatting properties.

Added ShapekEffects property in GroupShape class which gets the shape formatting properties.

Added ShapekEffects property in CanvasShape class which gets the shape formatting properties.

Added ShapekEffects property in Picture class which gets the shape formatting properties.

Added StyleEffects property in ShapeStyle class which gets the reference to style properties in a
FormatScheme.Effects list.

Added ShapekEffectsList property in FormatScheme class which gets a list of shape effects to be used within the
theme.

Changes From the Previous Version

Improved diagnostics when processing report templates which contained errors.

Resolved Issues

In Report Templates, fixed issues which occurred when processing templates using non-US cultures.
In Report Template, fixed issues which caused errors when parsing valid templates.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 272

Version 5.1.0.790

New Features and Improvements

Added Font.Fill property, which gets the fill formatting properties.

Added Font.Line property, which gets the outline text effect formatting properties.

Added FillFormat.Reset() method, which resets the fill format to inherited defaults.

Added LineFormatBase.Reset() method, which resets the line format to inherited defaults.

Added SaveOptions class, which provides various options controlling how a document is saved.

Added FontinfoCollection.Add() and Append() methods, which enables adding GrapeCity.Documents.Text.Font
instances to FontInfoCollection, optionally embedding those fonts.

Added Settings.SaveOptions property, which gets the document save options.

Added Settings.LocaleName property, which gets or sets the default locale name (language) of formatted
characters.

Added Settings.LocaleNameBi property, which gets or sets the locale name (language) of complex script
characters.

Added Settings.LocaleNameFarEast property, which gets or sets the locale name (language) of formatted Asian
characters.

In Report Templates, added DataTemplateOptions class, which represents options used in data template
processing. In particular, MissingFieldsHandling property allows ignoring

missing data fields.

In Report Templates, added DataTemplate.Options property, which gets options controlling the behavior of the
template processing engine.

In Report Templates, added todouble() formatter, which converts a string value to a double.

In Report Templates, added tobool() formatter, which converts a string value to a Boolean.

Added GrapeCity.Documents.Word.Layout.Page.SaveAsSvg() methods which save the current page to a stream
of file in SVG format.

Added GrapeCity.Documents.Word.Layout.Page.ToSvgz() method which saves the page to a byte array in SVGZ
format.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 273

Version 5.0.0.762

New Features and Improvements

e [Data Templates] Ability to use arrays of elementary types as data sources. The virtual "value" tag expands to
the value of an array element.

Basic support for embedded fonts.

Property DocumentBase.Fonts: gets the collection of Fontinfo objects associated with this document.
Several properties added to ThemeFont class to support embedded fonts.

Class FontInfo: represents the properties of a font used in a document.

Class FontInfoCollection: represents a collection of Fontinfo objects.

Class FontSignature: specifies code pages and Unicode subranges for which a font provides glyphs.
Class EmbeddedFont: represents an embedded font and its binary data.

Class EmbeddedFontCollection: represents a collection of EmbeddedFont objects.

Enumeration FontCharSet: defines character sets that may be supported by a font.

Enumeration FontFamily: specifies values representing the possible font families.

Enumeration FontPitch: specifies the pitch of a font.

Enumeration EmbeddedFontType: specifies the type of an embedded font.

Enumeration FontDataType: specifies the data type of an embedded font.

Bug fixes

e [Data Templates] If FindReplaceOptions.RemoveEmptyRuns is true, template expansion produces incorrect
results.

Breaking changes

® Removed method overloads that accept System.Drawing.Image type, as it is no longer supported on non-
Windows systems: Picture.Add(Image) and ImageData.Setimage(Image).
e EditableRangeCollection.Add() and EditableRangeCollection.Insert() method overloads changed.

Breaking changes affecting all GrapeCity.Documents packages:

® GrapeCity.Documents.Common package has been removed, types defined in it have been moved to
GrapeCity.Documents.Imaging.

® GrapeCity.Documents.Common.Windows package has been replaced by
GrapeCity.Documents.Imaging.Windows.

® GrapeCity.Documents.Pdf.Resources has been removed, types defined in it have been moved to
GrapeCity.Documents.Pdf.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 274

Version 4.2.0.719

New Features and Improvements

® Added Paragraph.RestartList() method that restarts the list numbering on the current paragraph.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 275

Version 4.2.0.715

New Features and Improvements

e Added FormattingCopyStrategy.KeepSource member which copies styles from the source document unless an
identical style that also has the same id exists in the destination document.

® [Data Templates] Support for several data sources.

® [Data Templates] Improved access to sibling data members.

e [Data Templates] Added 'sequence’ (or 'seq’) and 'follow' pair of formatters that allow iterating over two
sequences in parallel.

® [Data Templates] Support for JSON data sources.

® [Data Templates] Added 'restart’ list formatter that restarts nested numbered lists.

Bug fixes
® Miscellaneous bug fixes.

Breaking changes

® The default value of RegularExpressions property belonging to FindOptions class (FindReplaceOptions class

inherits the FindOptions class) has been changed from true to false.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 276

Version 4.1.0.658

New Features and Improvements

® Added property FindReplaceOptions.RemoveEmptyRuns which indicates whether empty runs should be
removed after a replace operation.

® Added Add() and Insert() method overloads to PictureCollection and ImageData classes that accept
System.Drawing.Image and GrapeCity.Documents.Drawing.Image types.

® Added RangeBase.GetlnnerCollection<T>() method which gets an enumerator that does not include objects
that start before the current range's start and end after the current range's end.

e Added property GcWordDocument.MalformedUriRewriter which specifies the malformed URI rewriter that can
be used to implement a custom strategy for rewriting malformed URIs.

® Added DefaultMalformedUriRewriter class which implements the default rewriting strategy, can be assigned to
MalformedUriRewriter.

® Added GetChildren<T>() method to ContentObject, ContentRange, Body and Section classes which gets the
collection of the object's children of a specified type.

Bug fixes

® Incorrect evaluation of toggle properties that use XOR-based calculation.
® |ncorrect indentation of some table rows in exported PDFs.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 277

Version 4.0.0.616

New Features and Improvements

Introduced Data templates feature which provides a flexible mechanism for creating data-bound documents.
Template tags are added to the document, and processed using the GcWordDocument.DataTemplate
property.

Added GrapeCity.Documents.Word.Templates.DataTemplate class which provides properties and methods that
are used to associate a GcWordDocument with template data sources, and to process data templates.

Added DataTemplate.DataSources property which gets the collection of data sources associated with the
current document's data templates. However, only one data source is supported in this version.

Added DataTemplate.Process() method which processes templates in the document, iterating over root items
in DataSources, and replacing template tags in the document with data.

Added DataTemplate.BatchProcess() method which iterates over root items in DataSources, starting with a
fresh copy of the document and processing templates separately for each root data item.

Added GcWordDocument.DataTemplate property which gets the DataTemplate object that provides properties
and methods used to manage template data sources and process data templates.

Version 4.0.0.632 (Maintenance) - Breaking Changes

isdaylightsavingtime formatter has been removed from Report Templates.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 278

Version 3.2.0.548

New Features and Improvements

® Enhanced support for shapes. New classes: CanvasShape, CanvasShapeCollection, InkShape,
InkShapeCollection, GroupShape, GroupShapeCollection. Added support for shape styles, presets, line and fill
properties.

® Added properties to Picture class: AlternativeText, Hidden, Name, ID.

® Added properties to ImageData class: Stretch, FillType, Tile, RotateWithObject, Dpi, Transparency.

® Implemented SolidColor.Brightness and SolidColor.TintAndShade properties.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 279

Version 3.1.0.508

New Features and Improvements

® Added RangeBase.Find() and RangeBase.Replace() methods that allow to find and replace content and
formatting.

® Added FindFormatting class that represents the formatting criteria for a find operation.

® Added FindOptions class that represents options for a find operation.

® Added FindReplaceOptions class that represents options for a find and replace operation.

e Added FindResult class that represents the result of a find operation.

® Added MatchDetails class that represents the details of a match.

e Added ReplacingArgs class that represents the details about a found text.

e Added ReplacedArgs class that represents a text range that replaced a search text.

® Added ReplaceAction enum that specifies the action to take when a match is found.

® Added ShapeBase class, the base class for all types of shapes.

® Added Shape class that represents a shape element in a body content.

e Added ShapeCollection class that represents a collection of Shape objects.

e Added TextFrame class that represents the text contents of a Shape and associates that textual information,
referred to as a text frame story, with a story identifier.

® Added TextFrameCollection class that represents a collection of TextFrame objects.

e AddedLinkedTextFrame class that represents a text frame that participates in a text frame story.

® Added TextFrameFormat class that represents the format of a text frame.

® Added TextOrientation enum that specifies text orientation.

e Added TextWrapFormat enum that specifies the preset text shape geometries that can be used for a text
frame.

e AddedTextVerticalAnchor enum that specifies the available vertical anchoring types for text.

e Added RangeBase.Shapes property that gets the collection of shapes included in this range.

e Added RangeBase.TextFrames property that gets the collection of text frames included in this range.

e Added RangeBase.GetDrawings() method that gets the collection of all drawing (based on ShapeBase class)

objects like picture, shape and other unknown shape types.
® Added PictureBulletCollection.Add(byte[] imageBytes, string contentType) that creates a new PictureBullet and
adds it to the collection.
Bug fixes
® Fixed incorrect rendering of some tables while exporting from to PDF from DsWord.

Breaking changes

® Picture class is now based on ShapeBase class (was based on ContentObject class).
® Removed public constructor from ImageData class.
® Removed method PictureBulletCollection.Add(ImageData)

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 280

Version 3.0.0.414

New Features and Improvements

Added formatting clear method to RangeBase.

Added the feature to copy document content inside a document and preserve content formatting.
Added the feature to move document content inside a document and preserve content formatting.
Added the feature to copy document content between documents and preserve formatting.
Added the feature to copy document content between documents and preserve formatting.
Added the feature to split the document on several documents and preserve formatting.

Added the feature to combine content from different Word documents into a single one.

Added DocumentProtection feature.

Added ReadOnly regions protection feature.

Added ability to detect source of formatting properties.

Bug fixes

® Fixed the issue where the Max length of password should be 15 digits.
® Fixed the issue where the password that contains special characters can not stop protection.
® Fixed the issue where WritePassword doesn't recognize current password implementation.

Breaking changes
® The HMAC hash from Password.KnownHashes cannot be used anymore.

® The API has changed for Split/Merge.
® The CompareLocationWith method was moved from Range to RangeBase.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 281

Version 2.2.0.310

New Features and Improvements

The following features have been added with this version of the product.

New classes:

DocumentBase class - Represents the base class for GcWordDocument and GlossaryDocument classes.
GlossaryDocument - Represents a supplementary document storage which stores the definition and

content to be carried with the document for future insertion and/or use, but which should not be visible within
contents of the main document story.

FormattedMark class - Specifies the set of properties applied to the special content mark
BuildingBlockCollection class - Represents a collection of building blocks.

BuildingBlock class - Represents a building block in a document.

Category class - Specifies the categorization for a building block. This categorization should not imply any
behaviors around the building block, and is only used to organize set of building blocks within an application
or user interface i.e. to disambiguate between two building blocks with the same entry name.
CustomXmlPart class - Represents a custom XML data storage in the document.

CustomXmlPartCollection class - Represents a collection of CustomXmlPart objects in the document.
LastRenderedPageBreak class - Represents the position delimited the end of a page when this document was
last saved by an application which paginates its content.

ContentControl class - Represents an individual content control. Content controls are bound and potentially
labelled regions in a document that serve as containers for specific types of content. Individual content
controls may contain contents such as dates, lists, or paragraphs of formatted text.

ContentControlCollection class - Represents a collection of ContentControl items.

ControlContent class - Provides access to the content of a ContentControl.

ContentControlEndMark class - Specifies set of properties applied to the mark present to delimit the end

of control contents.

CheckBoxSymbol class - Specifies a symbol to be used for a checkbox state.

DropDownltem class - Specifies a single list item within the content control. Each list item should be displayed
in the list for the content control (if a user interface is present).

DropDownltemCollection class - Represents a list of DropDownltem objects.

XmlIMapping class - Specifies the information to be used to establish a mapping between a content control
and an XML node stored within a Custom XML Data part in the document.

New enumerations:

BuildingBlockGallery enum - Specifies a building block gallery.

BuildingBlockType enum - Specifies the type of a building block.

BuildingBlockInsertOptions enum - Specifies how a building block is inserted into a document.
ContentControlType enum - Specifies type of the content control.

ContentControlLevel enum - Specifies layout level of the content control.

ContentControlAppearance enum - Specifies appearance of the content control.

CalendarType enum - Specifies the calendar type.

DateStorageFormat enum - Specifies the date translation to be applied to the date content control.
WebExtensionRelationship enum - Specifies relationship between a content control and an Office Web
Extension.

New members:

Cell CellCollection.Insert(string text, InsertLocation location) method - Inserts a Cell into this collection at the
specified location.

Row RowCollection.Insert(string[] texts, InsertLocation location) method - Inserts a Row into this collection at
the specified location.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 282

® BodyType.BuildingBlock property - Represents the body of a building block.

® [ist<string> Settings.AttachedXmlISchemas - Gets the list of custom XML schema whose target namespace is
associated with this document when it is loaded, if such a schema is available to the hosting application.
Applications can also load and utilize any additional schemas as well as those explicitly mentioned here. These
custom XML schemas can then be used to validate the structure of the CustomXmlPart.XmlDocument in the
document etc.

e ContentControlCollection RangeBase.ContentControls property - Gets the collection of content controls
included in this range.

e ContentControl Range.ParentContentControl property - Gets the parent content control where the range

content is stored.

Added ImageData.ContentType property - Gets the image content type.

Added Marker.StartSection property - Gets the Section which starts in this marker.

Added Marker.EndSection property - Gets the Section which ends in this marker.

Added Paragraph.AddSectionBreak(SectionStart) method - Breaks the parent section right after this paragraph.

Added the GcWordDocument.GlossaryDocument property - Gets the glossary document.

Added the GcWordDocument.CustomXmlParts property - Gets the collection of CustomXmlPart objects.

Improvements:

® Improved performance when calculating values of derived properties.
e |mproved Word to PDF export.

Changes From the Previous Release

This version of the product has the following change.

® Range() and ComparelLocationWith(Range range) methods now accept RangeBase class in range argument
instead of the Range class.

Bug Fixes
The following issues have been resolved since the last release.

® Fixed the incorrect saving issue of background color shading. Now, MS Word doesn't show the message "not
enough memory to update the display" while loading the saved document.
® Now, no wrong exception messages are shown when users apply a wrong style type to a content object.

Breaking Changes

This version of the product has the following breaking changes.

® The type of Document property has been changed from GcWordDocument to DocumentBase on the following
classes: ContentObject, ContentRange, RangeBase, Style, StyleCollection, ListTemplateCollection.

® The ImageData(GcWordDocument document, bool isPictureBullet) constructor has been changed to
ImageData(DocumentBase document, bool isPictureBullet). This means that it now accepts DocumentBase class
in document argument instead of the GcWordDocument class.

® Earlier, theme colors could be modified directly via GcWordDocument.Theme. But now, theme colors cannot be
modified directly via GcWordDocument.Theme. Instead, users need to use Settings to modify theme colors
now.

® The Theme.ColorScheme[ThemeColorld] indexer has been removed. Instead, users can use the new
ThemeColor Settings.GetThemeColor(ThemeColorld) method.

® The ColorScheme.RemapColor(ThemeColorld, ThemeColorSchemeld) method has been removed. Instead,
users can use the new method - Settings.RemapColor(ThemeColorld, ThemeColorSchemeld).

e Sections in DsWord OM are not objects but section type breaks (this provides consistency). Now, Section class
does not inherit the ContentObject class.

® The SectionCollection class is inherited from ContentCollection<Section> instead of ContentObjectCollection

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 283

class.
® Removed Section.Guid and Section.ParentContent properties.

Removed SectionCollection.Add(), SectionCollection.Insert() and Section.Split() methods. Instead of these
methods, users can use the new Paragraph.AddSectionBreak() method.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Word 284

Version 2.1.0.260

New Features and Improvements

Added EastAsianLayout class which specifies any East Asian typography settings which shall be applied to the
contents of a run.

Added EastAsianTypography class which provides options for East Asian typography.

Added HyphenationOptions class which allows to configure document hyphenation options.

Added ColorScheme class which represents the color scheme of a Microsoft Office theme.

Added ThemeColor class which represents a color in the color scheme of a theme.

Added ThemeColorSchemeld enum which specifies the theme colors for document themes.

Added ViewType enum which provides possible values for the view mode in application.

Added ZoomType enum which provides possible values for how large or small the document appears on the
screen in the application.

Added ViewOptions class which provides various options that control how a document is shown in application.
Filled CompatibilityOptions class which contains compatibility options (previously it contained

only CompatibiltyMode property).

Added FontBase.EastAsianLayout property that gets East Asian typography settings which shall be applied to
the contents of the run.

Added FontBase.FitTextWidth property that gets or sets that the contents of the run which shall not be
automatically displayed based on the width of its contents, rather its contents shall be resized to fit the width
specified by the this property.

Added FontBase.FitTextld property that gets or sets a unique ID which shall be used to link multiple contiguous
runs with specified "FitTextWidth" property to each other to ensure that their contents are correctly merged
into the specified width in the document.

Added Settings.HyphenationOptions property which provides access to document hyphenation options.
Added Settings.EastAsianTypography property which provides access to East Asian typography options.
Added Settings.ViewOptions which provides various options that control how a document is shown in
application.

Added Theme.ColorScheme which gets a set of colors which are referred to as a color scheme.

Improved FontBase.Name property behavior - If HintType is FontHintType.ComplexScript returns NameBi", if
HintType is FontHintType.EastAsia returns NameFarEast.

Improved performance of creating a new GcWordDocument instance more than 4 times.

Allowed to open a DOCX while it is open in MS Word (use ReadWrite share mode instead of Read in
GcWordDocument.Load()).

Bug Fixes

Fixed the issue where page color disappears after export.
Fixed the issue with saving picture bullets for built-in list templates.

Breaking Changes

Renamed ThemeColor enum to ThemeColorld.
Changed default value for WordColor.ThemeShade from 0 to 255.
Changed default value for WordColor.ThemeTint from 0 to 255.

© 2024 MESCIUS inc. All rights reserved.

	Table of Contents
	Document Solutions for Word Overview
	Key Features
	Getting Started
	Quick Start
	License Information
	Technical Support
	Contacting Sales
	Redistribution
	End-User License Agreement

	Product Architecture
	Features
	Comments
	Content Controls
	Glossary Document
	Document
	Document Properties
	Document Protection
	Document Formatting Source
	Copy or Move Document Content
	Split or Merge Documents
	Page Settings

	Styles
	Text Effect

	Export
	Fields
	Footnote and Endnote
	Embedded Fonts
	Header and Footer
	Images
	Shapes
	Textbox
	Canvas Shape
	Group Shape
	Ink Shape
	Shape
	Shape Format
	Picture
	Picture Format
	Online Video
	Presets and Themed Styles
	Shape Styles

	Office Math
	Complex Equation Examples

	Links
	Hyperlink
	Bookmark

	Lists
	Paragraph
	Paragraph
	Indentation
	Line Spacing
	Borders
	Background Shading
	Tab Stops
	Paragraph Numbering
	Paragraph Styling

	Range Objects
	Sections
	Table
	Table
	Cell
	Row

	Text
	Themes
	Helper Methods for Adding Content

	Report Templates
	Template Configuration
	Template Tags
	List
	Table
	Links
	Loops and Nesting
	Conditionally Hide Blocks
	Calculation
	Formatters
	Restart List Formatter
	Sequence and Follow Formatter
	Block Behavior Formatters

	Data Source Binding
	Template Validation
	Walkthrough
	Generate Document with Advanced Layout
	Generate Document using JSON Data Source
	Generate Document using Multiple Data Sources

	Samples
	API Reference
	Release Notes
	Breaking Changes
	Version 7.1.0
	Version 7.0.0
	Version 6.2.0
	Version 6.1.0
	Version 6.0.0
	Version 5.2.0.800
	Version 5.1.0.790
	Version 5.0.0.762
	Version 4.2.0.719
	Version 4.2.0.715
	Version 4.1.0.658
	Version 4.0.0.616
	Version 3.2.0.548
	Version 3.1.0.508
	Version 3.0.0.414
	Version 2.2.0.310
	Version 2.1.0.260

