ComponentOne OLAP

What is C10lap

C1Olap is a suite of .NET controls that provide analytical processing features similar to those found in
Microsoft Excel’s Pivot Tables and Pivot Charts.

C10lap takes raw data in any format and provides an easy-to-use interface so users can quickly and
intuitively create summaries that display the data in different ways, uncovering trends and providing
valuable insights interactively. As the user modifies the way in which he wants to see the data, C10lap
instantly provides grids, charts, and reports that can be saved, exported, or printed.

Introduction to Olap
Olap means “online analytical processing”. It refers to technologies that enable the dynamic
visualization and analysis of data.

Typical Olap tools include “Olap cubes”, and pivot tables such as the ones provided by Microsoft Excel.
These tools take large sets of data and summarize it by grouping records based on a set of criteria. For
example, an Olap cube might summarize sales data grouping it by product, region, and period. In this
case, each grid cell would display the total sales for a particular product, in a particular region, and for a
specific period. This cell would normally represent data from several records in the original data source.

Olap tools allow users to redefine these grouping criteria dynamically (on-line), making it easy to
perform ad-hoc analysis on the data and discover hidden patterns.

For example, consider the following table:

Date Product Region Sales
Oct 2007 Product A North 12
Oct 2007 Product B North 15
Oct 2007 Product C South 4
Oct 2007 Product A South 3
Nov 2007 Product A South 6
Nov 2007 Product C North 8
Nov 2007 Product A North 10
Nov 2007 Product B North 3

Now suppose you were asked to analyze this data and answer questions such as:

e Are sales going up or down?
e Which products are most important to the company?
e Which products are most popular in each region?

In order to answer these simple questions, you would have to summarize the data to obtain tables such

as these:

Sales by Date and by Product

Date Product A Product B Product C Total
Oct 2007 15 15 4 34
Nov 2007 16 3 8 27
Total 31 18 12 61
Sales by Product and by Region

Product North South Total

Product A 22 9 31

Product B 18 18

Product C 8 4 12

Total 48 13 61

Each cell in the summary tables represents several records in the original data source, where one or
more values fields are summarized (sum of sales in this case) and categorized based on the values of
other fields (date, product, or region in this case).

This can be done easily in a spreadsheet, but the work is tedious, repetitive, and error-prone. Even if you
wrote a custom application to summarize the data, you would probably have to spend a lot of time
maintaining it to add new views, and users would be constrained in their analyses to the views that you
implemented.

OLAP tools allow users to define the views they want interactively, in ad-hoc fashion. They can use pre-
defined views or create and save new ones. Any changes to the underlying data are reflected
automatically in the views, and users can create and share reports showing these views. In short, OLAP
is a tool that provides flexible and efficient data analysis.

C10lap Architecture

C10lap includes the following controls:

C10lapPage

The C10lapPage control is the easiest way to develop OLAP applications quickly and easily. It provides a
complete OLAP user interface built using the other controls in C10lap. The C10lapPage object model
exposes the inner controls, so you can easily customize it by adding or remove interface elements. If you
want more extensive customization, the source code is included and you can use it as a basis for your
own implementation.

The diagram below shows how the C10lapPage is organized:

C10lapPanel

The C10lapPanel control is the core of the C10lap product. It has a DataSource property that takes raw
data as input, and an OlapTable property that provides custom views summarizing the data according
to criteria provided by the user. The OlapTable is a regular DataTable object that can be used as a data
source for any regular control.

The C10lapPanel also provides the familiar, Excel-like drag and drop interface that allows users to
define custom views of the data. The control displays a list containing all the fields in the data source,
and users can drag the fields to lists that represent the row and column dimensions of the output table,
the values summarized in the output data cells, and the fields used for filtering the data.

At the core of the C10lapPanel control, there is a C10lapEngine object that that is responsible for
summarizing the raw data according to criteria selected by the user. These criteria are represented by
C1OlapField objects, which contain a connection a specific column in the source data, filter criteria,
formatting and summary options. The user creates custom views by dragging C10lapField objects from
the source Fields list to one of four auxiliary lists: the RowFields, ColumnFields, ValueFields, and
FilterFields lists. Fields can be customized using a context menu.

Notice that the C10lap architecture is open. The C10lapPanel takes any regular collection as a
DataSource, including data tables, generic lists, and LINQ enumerations; it then summarizes the data
and produces a regular DataTable as output. C10lap includes two custom controls that are optimized
for displaying the OLAP data, the C10lapGrid and C10lapChart, but you could use any other control as
well.

C10lapGrid

The C10lapGrid control is used to display OLAP tables. It extends the C1FlexGrid control and provides
automatic data binding to C10lapPanel objects, grouped row and column headers, as well as custom
behaviors for resizing columns, copying data to the clipboard, and showing details for any given cell.

The C10lapGrid control extends the C1FlexGrid control, our general-purpose grid control. This means
the whole C1FlexGrid object model is also available to C10lap users. For example, you can export the
grid contents to Excel or use styles and owner-draw cells to customize the grid’s appearance.

C10lapChart
The C10lapChart control is used to display OLAP charts. It extends the C1Chart control and provides
automatic data binding to C10lapPanel objects, automatic tooltips, chart type and palette selection.

The C10lapChart control extends the C1Chart control, our general-purpose charting control. This means
the whole C1Chart object model is also available to C10lap users. For example, you can export the chart
to different file formats including PNG and JPG or customize the chart styles and interactivity.

C10lapPrintDocument

The C10lapPrintDocument component is used to create reports based on OLAP views. It extends the
PrintDocument class and provides properties that allow you to specify content and formatting for
showing OLAP grids, charts, and the raw data used to create the report.

Quickstart
This section presents code walkthroughs that start with the simplest C10lap application and progress to
introduce commonly used features.

An Olap application with no code

To create the simplest C10lap application, start by creating a new Windows Forms application and
dragging a C10lapPage control onto the form. Notice that the C10lapPage control automatically docks
to fill the form, which should look like this:

RN T T
= | | Grid - |22 Chart ~ 3] Report ~
Chooze fields to add to table: Clap Grid l]m[ha‘tlﬂawﬂa‘.a

Drag fields between areas below:
“ Filter [Column Fields
|5 Row Fields ¥ Values

Now, let us select a data source for the application. Select the C10lapPage control and activate the
smart designer by clicking the small triangle that appears at the top right corner of the control. Use the
combo box next to “Choose Data Source” to create a project data source and assign it to the control.

For this sample, find the Northwind database and select the “Invoices” view as shown below:

TETETEETETE)
s

[% Choose Your Database Objects

Which database objects do you want in your dataset?

-[[]L5 Tables
=l Views
-[CI/=)] Category Sales for 1995
= Current Product List
=) Invoices
=) Order Details Extended
Order Subtotals
=) Product Sales for 1995
Products Above Average Price
= Quarterly Qrders
=} Sales by Category |
= Ten Most Expensive Products

=

=

DataSet name:
MwindDatabet

| <Previeus || nei- [Enish || cancel |

Note that as soon as you select the data source, the fields available appear in the C1OlapPanel on the
left of the form.

The application is now ready. The following sections describe the functionality provided by default,
without writing a single line of code.

Creating OLAP Views

Run the application and you will see an interface similar to the one in Microsoft Excel. Drag the
“Country” field to the “Row Fields” list and “ExtendedPrice” to the “Value Fields” list, and you will see a
summary of prices charged by country as shown below:

:E et . (e e 5
5 | | [Grid - |22 Chart ~ £ Report ~
Choose fields to add to table: m
Address = ExtendedPrice | Total -
City E| Argentina 8119 8,119
Lrminy Austria 128,004 128,004
i ES?Z:Z:E“E Belgium 33,825 33.825
= Brazil 106,926 106,926
Discount |
EtondedPrice Canada 50,196 50,196
— . ~ || Denmark 32,661 32,661 L
Draq fields between areas below: 7':'-" land 18,810 18,810
7 Filter B8 ColumnFields | f@mee | §1,358 a1t
Germany 230,285 230,285
Ireland 49,980 49,380
Ttaly 15,770 15.770
Mexico 23.582 23,582
Row Fields Norway 5,735 5735
| . . Poland 3,532 3,532
i] Portugal 11472 11472
N Spain 17.983 17.983]
Convmedmum A ANE oA ANK
2155 Records .:

Click the “Olap Chart” tab and you will see the same data in chart format, showing that the main
customers are the US, Germany, and Austria.

Now drag the “SalesPerson” field into the “Column Fields” list to see a new summary, this time of sales
per country and per sales person. If you still have the chart tab selected, you should be looking at a chart
similar to the previous one, except this time the bars are split to show how much was sold by each
salesperson:

sy Forml oo " - Lglﬂlg

=5 [|FHGrid + [Chart ~ {3 Report -
Choose fields to add to table: Olap Grid Qlap Chart | Raw Data
[ProductMame -
[Quantity ExtendedPrice by Country and Salesperson
[] Region
[] RequiredDate
Salesperson ? Argentina
[7] ShipAddress 3 Bﬂlust"a
. elgium
[ShipCity Brazil
[ShipCountry Canada
71 ShinNams - Denmark I Andrew Fuller
) i Erance I Anne Dodsworth
Drag fields between areas below: Germany [Janet Leverling
7 Filter i Column Fields “e'ﬁ;‘;j [Laurz Callzhan
EE— e [Morgret Pecock
rg%rl‘::g [Michael Suyama
Portugal I Mancy Davelic
Spain I Robert King
Swed
: Swiu\:rla:g [steven Buchanan
155 Row Fields X Values
-~ ndedDrice USA
(Couniny ——— Jxtenceoprc | IR
T T
0 100,000 200,000 300,000

| 2155 Records 1|

Move the mouse over the chart and you will see tooltips that show the name of the salesperson and the
amount sold when you hover over the chart elements.

Now create a new view by swapping the “SalesPerson” and “Country” fields by dragging them to the
opposite lists. This will create a new chart that emphasizes salesperson instead of country:

s Forml , (=] E [t
=5 [|FHGrid + [Chart ~ {3 Report -

Choose fields to add to table: Olap Grid | Qlap Chart | Raw Data

[ProductMame -

[Quantity ExtendedPrice by Salesperson and Country

[] Region

[] RequiredDate

Salesperson = Andrew Fuller

[] ShipAddress T

[ShipCity Anne Dedswerth

[T ShipCountry _ I Argenting [T] Mexico
7] ShinMName S Janet Leverling I Austria [Norway

) [Belgium [Poland
\[:_:ag fields between area-iébelow. Laura Callahan I Grezl [Portugal
Filter Column Fields ;
= Margaret Peacock [Canads 3 Spain
[Denmark [IJ Sweden
Michael Suyama [Finland [Switzerland
[France [UK
Mancy Davalic [Germany] usa
) Ireland Venezuela
= —
125 Row Fields X Values Robert King [Italy
| ExtendedPrice Steven Buchanan
0 100,000 200,000300,000
2,155 Records .:

The chart shows that Margaret Peacock was the top salesperson in the period being analyzed, followed
closely by Janet Leverling and Nancy Davolio.

Multiple Value Fields
By default, C10lap is configured to allow only one value field per view. When the user adds a value field
to the Values list in the C10lapPanel, the new field replaces any pre-existing ones.

In some cases, you may want to allow users to summarize multiple value fields at once. To enable this,
you have to modify the value of the Maxltems property on the C10lapEngine.ValueFields collection. For
example, the code below initializes a C10lapPage to display a summary of sales price and freight by
country and by salesperson:

// get a reference to the olap engine
var olap = this.clOlapPagel.OlapEngine;

// allow up to two value fields
olap.ValueFields.MaxItems = 2;

// summarize ExtendedPrice and Freight
olap.ValueFields.Add ("ExtendedPrice", "Freight");

// by Country and by SalesPerson

olap.RowFields.Add ("Country") ;
olap.ColumnFields.Add ("SalesPerson") ;

The result is shown below:

ot Farml R —— - PES— Elﬂlﬂ-‘
EH| 9 [T Grid ~ |4 Chart ~ £ Report -
Choose fields to add to table: Olap Grid | Qlap Chart | Raw Data
it Andrew Fuller Anne Dodsworth Jan ~
[0 City |E Country i Freight ExtendedPrice Freight Ex
Counlry Germany : 53627 8377 15754 288
[l CustomerlD USA 2,054 6,175 17225 1,708
= Customers.Companyhame ustria 16,603 1,643 8,968 2858
[Discount - -
ExtendedPrice Ireland 10,605 1,625 7404 1,547
Freight Erazil 5,985 1,213 1,510 B4
B Orden Note ~ || France 5434 1431 3829 B2 |
Drag fields between areas below: Canada 5,035 388 967 71 1
7 Filter i Column Fields Sweden 8.037 1.554 4880 245
Finland 5,878 1,058 1591 238
ltaly 5422 1,008 B34 18
LK 341 216 6,837 744
Venezuela 2,966 334 378 7
] Row Fields Z Values Belgium 2,867 170 2808 37 n
ExtendedPrice (Su [JlEETN 2348 100 0 0
Freight (Sum) Mexico 2181 274 0 0
Spain 978 309 224 16
Norway 622 9 0 0 i
[C] Defer Updates o] R
2155 Records, Sum = 131 908

Note that the Maxltems property can also be used to limit the maximum number of fields that the user
can add to the RowFields, ColumnFields, and FilterFields collections. By default, MaxIltems is set to 1 for
the ValueFields collection and to -1 on all others (which means allow any number of fields).

Conditional Field Formatting

In many applications it may be useful to highlight cells on the grid according to the values they contain.
For example, you may want to show values above a specific threshold with a green background or using
a bold font.

C10lap supports conditional formatting with three style properties available on the C10lapField class:

ClOlapField.Style: This property contains a style that is applied by default to cells that display the field
values. It is mostly useful in views that contain multiple value fields, so users can easily see which
columns belong to each value field.

C1OlapField.StyleHigh: This property contains a style that is applied to cells that contain values above a
specified threshold. The threshold may be a specific value (e.g. 1,000) or it may be specified as a
percentage (e.g. 90%). It is often useful to specify thresholds as percentages because they automatically
adapt to the range of values being displayed. For example, a high threshold specified as 90% will apply
the style to values between 90 and 100 if the field contains values between 0 and 100, and will apply the
style to values between 900 and 1,000 if the field contains values between 0 and 1,000.

C1OlapField.StyleLow: This property contains a style that is applied to cells that contain values below a
specified threshold. Again, the threshold may be a specific value (e.g. 10) or it may be specified as a
percentage (e.g. 10%).

The code below creates conditional styles for all value fields in the view and causes cells in the bottom
10% of the value range to be displayed in red, and cells in the top 10% of the value range to be displayed
in green:

// set up conditional formats in code

foreach (var f in olap.ValueFields)

{
// show bottom 10% values in bold with a red background
var sl = f.Stylelow;
sl.ConditionType = Cl.0Olap.ConditionType.Percentage;
sl.Value = 0.1;
sl.BackColor = Color.FromArgb (255, 230, 230);
sl.FontBold = true;

// show top 10% values in bold with a green background
var sh = f.StyleHigh;
sh.ConditionType = Cl.0Olap.ConditionType.Percentage;
sh.Value = 0.9;
sh.BackColor = Color.FromArgb (230, 255, 230);
sh.FontBold = true;

}

The result is shown below:

F k|
ot C1Clap: Cenditional Formatting - @Elﬂ
- B T e) -_— -
EHd 9 FGrid » |4 Chart - £ Report -
Chioose fields to add to table: Olap Grid Clap Chart | Raw Data
T - oz Coma
[Gity |E| ProductMame ExtendedPrice Freight ExtendedFrice v
Country Céte de Blaye 24,400 1.278 8.263 ‘E ‘
[C] CustomerlD Tarte au sucre 394 79 5774 B
[Customers CompanyName Camembert Fierrot 5,923 1.395 4599
[Discount — :
7] ExtendedPrice « | | Grocchi di nonna Alice 4234 m 3610
Drag fields between areas below: Alice Mutton 1.053 143 3479
“F Fiter “H Column Fields Raclette Courdavault 3858 240 2,066 i
Grandma's Boysenberry Sprea 1.900 118 2,050 I
lkura 2790 39 1.823
Carnarvon Tigers 3225 58 1,600
12 Row Fields ¥ Values Manjimup Dried Apples 2822 283 1272 I
S G| | Mozzarella di Giovanni 1.346 926 1218
Freight (Sum) Chai 264 169 1170
Scottish Longbreads 170 953 i
I [Defer Updates Ll [b
| 2,155 Records, Surn = 900

Conditional formats may also be created and edited at run-time by users. Right-clicking a field in the
Cl1OlapPanel and selecting the “Field Settings...” option from the context menu brings up the field
properties dialog, which contains tabs for the Style, StyleHigh, and StyleLow properties of the field.

This is what the field editor looks like:

F |
Field Settings: ExtendedPrice Elﬂlg
Apply to Values Above
[13:] [F‘ercentage V]
Style

Background: [J230.255. 230
Il Foreground: [

=]
=]
|

[oK H Cancel]

In addition to C10lap’s built-in conditional formatting capabilities, remember that the C10lapGrid
control derives from the C1FlexGrid grid, which means you can use all the C1FlexGrid features in your
C10Olap applications. These features include owner-draw cells which allow for complete customization
over how cells are displayed to the user. For example, you could easily customize the grid to shows icons
for high and low values.

Creating OLAP Reports

This is an interesting chart, so let’s create a report that we can e-mail to other people in the company.
Click the “Report” button at the top of the page and you will see a preview showing the data on the first
page and the chart on the second page. In the preview dialog, click the “Page Setup” button and change
the page orientation to landscape. The report should look like this:

Pr———— - T T e (= [

S B O |[&Zoom - fd 4 1 of2 b Bl X Close

ST

[IIII:IIII:IIII!IEIII Jula [] [s 5]
. £

[

Now you can print the report or click the “Export to PDF” button to generate a PDF file that you can
send to others or post on the web.

Close the preview window and save this view by clicking the “Save” button. You can create and save as
many views as you like.

Copying data to Excel

The built-in reports are convenient, but in some cases you may want to copy some or all the data to
Excel so you can perform additional analyses including regressions, create customized reports by
annotating the data or adding custom charts.

The C10lapGrid supports the clipboard by default, so you can simply select the data you are interested
in, press Control + C, then paste it directly into an Excel sheet. The row and column headers are included
with the data.

Summarizing Data
Before we move on to the next example, let’s create a new view to illustrate how you can easily

summarize data in different ways.

This time, drag the “SalesPerson” field to the “Row Fields” list and the “OrderDate” field to the “Column
Fields” list. The resulting view contains one column for each day when an order was placed. This is not
very useful information, because there are too many columns to show any trends clearly. We would like
to summarize the data by month or year instead.

One way to do this would be to modify the source data, either by creating a new query in SQL or by
using LINQ. Both of these techniques will be described in later sections. Another way is simply to modify
the parameters of the “OrderDate” field. To do this, right-click the “OrderDate” field and select the
“Field Settings” menu. Then select the “Format” tab in the dialog, choose the “Custom” format, enter
“yyyy”, and click OK.

The dates are now formatted and summarized by year, and the OLAP chart looks like this:

[ot Forml " = |E &1
5 | |[7 Grid = |22 Chart ~ {3 Report ~
Choose fields to add to table: | Olap Grid | Qlap Chart | Raw Datal
[CustemerMame B
[Z] Discount - ExtendedPrice by Salesperson and OrderDate
ExtendedPrice |E|
[T] Freight W
OrderDate Andrew Fuller
[OrdedD Anne Dodsworth
[[] PostalCede
Ea 4 o Janet Leverling
Drag fields between areas below: Laura Callahan
W Filter i Column Fields Margaret Peacock N 1996
Er— —E
Michael Suyama I 1998
Nancy Davolic
Robert King
1 Row Fields Z Values
EendecPrice Sevenucharse S |
0 100,000 200,000 300,000
2155 Records

If you wanted to check how sales are placed by month or weekday, you could simply change the format
to “MMMM” or “dddd”.

Drilling Down on the Data

As we mentioned before, each cell in the OLAP grid represents a summary of several records in the data
source. You can see the underlying records behind each cell in the OLAP grid by right clicking it with the
mouse.

To see this, click the “Olap Grid” tab and right-click the first cell on the grid, the one that represents
Andrew Fullers’s sales in 1996. You will see another grid showing the 40 records that were used to
compute the total displayed in the Olap grid:

as! Forml E@g
5 = | [Grid - |22 Chart - 3] Report ~
Choose fields to add to table: i Olap Grid Olap Chart | Raw Datal
[C] Customerhiame i 1996 1997 1998 T
[C] Discount || Andrew Fuller 21,757 70,444 74,337
Ext. g5 Detail View: 40 records " EIEI&J 1,103
JD Fre . 6,563
Ord Address City Country CustomerlD CustomerMName LI
[Ord 24 place Kléber Strasbourg France BLONP Blondesdds| pére et fils -390
[[] Pos 24, place Kléber Strasbourg France BLONP Blondesdds| pére et fils £ 136 [l
= Heerstr, 22 Leipzig Germany MORGK Mergenstern Gesundkost 144
Drag fie Heerstr, 22 Leipzig Germany MORGK Morgenstern Gesundkost | P
" Filte Berguvsvigen & Luled Sweden BERGS Berglunds snabbkdp p-865
Berguvsvigen & Luled Sweden BERGS Berglunds snabbkap p:692
Berguvsvigen & Luled Sweden BERGS Berglunds snakbkép 62
59 rue de I'Abbaye Reims France VIMET Vins et alcools Chevalier
Via Ludovico il Moro 22 Bergamo Italy MAGAL Magazzini Alimentari Riuniti
1 Rou Via Ludovico il Moro 22 Bergamo Ttaly MAGAA Magazzini Alimentari Riuniti
I 89 Chiaroscurc Rd. Portland USA LOMEP Lonesome Pine Restaurant i
F N —T— b
- | | H T s = 3
2155 Records

Customizing the C10lapPage

The previous example showed how you can create a complete OLAP application using only a
C10lapPage control and no code at all. This is convenient, but in most cases you will want to customize
the application and the user interface to some degree.

Persisting OLAP views

We will start by adding a default view to the previous application. To do this, right-click the project node
in the solution explorer, click the “Properties” item, then select the “Settings” tab and create a new
setting of type string called “DefaultView”:

Application Synchronize [Z] View Code | Access Modifier; Internal -

Build

Application settings allow you to store and retrieve property settings and other

information for your application dynamically. For example, the application can save a

Debug user's color preferences, then retrieve them the next time it runs. Learn more about
application settings...

Build Events

Resources

Services Name Type Scope Value

Settings NWINDCon... | (Conne... ¥ | Application Prot.nder:MlcrosiT.Jlet.OLEDB.
w A4

*

This setting will be used to persist the view across sessions, so any customizations made by the user are
automatically saved when he closes the application and restored next time he runs it.

To enable this behavior, open the “Form1” form, switch to code view, and add the following code to the
application:

private void Forml Load(object sender, EventArgs e)

{
// auto-generated:
// This line of code loads data into the 'nWINDDataSet.Invoices' table.
this.invoicesTableAdapter.Fill (this.nWINDDataSet.Invoices);

// show default view: this assumes an application
// setting of type string called "DefaultView"

var view = Properties.Settings.Default.DefaultView;
if (!'string.IsNullOrEmpty (view))

{

clOlapPagel.ViewDefinition = view;

}

else

{
// build default view now
var olap = clOlapPagel.OlapEngine;
olap.BeginUpdate() ;
olap.RowFields.Add ("ProductName") ;
olap.ColumnFields.Add ("Country") ;
olap.ValueFields.Add ("ExtendedPrice") ;
olap.EndUpdate () ;

}

// closing form, save current view as default for next time
protected override void OnClosing(CancelEventArgs e)

{

// save current view as new default
Properties.Settings.Default.DefaultView = clOlapPagel.ViewDefinition;
Properties.Settings.Default.Save() ;

// fire event as usual
base.OnClosing(e) ;

}

asdasdasdas

The first line should already be there when you open the form. It was automatically generated to load
the data.

The next block of code checks whether the “DefaultView” setting is already available. If it is, then it is
assigned to the C10lapPage.ViewDefinition property. This applies the entire view settings, including all
fields with their respective properties, as well as all charting, grid, and reporting options.

If the “DefaultView” setting is not available, then the code creates a view by adding fields to the
RowFields, ColumnFields, and ValueFields collections. The view created shows sales (sum of extended
price values) by product and by country.

The next block of code overrides the form’s OnClosing method and saves the current view by reading
the C10lapPage.ViewDefinition property and assigning it to the “DefaultView” setting, which is then
saved.

If you run the project now, you will notice that it starts with the default view created by code. If you
make any changes to the view, close the application, and then re-start it, you will notice that your
changes are restored.

Creating Predefined Views

In addition to the ViewDefinition property, which gets or sets the current view as an XML string, the
Cl1OlapPage control also exposes ReadXml and WriteXml methods that allow you to persist views to
files and streams. These methods are automatically invoked by the C10lapPage when you click the
“Load” and “Save” buttons in the built-in toolstrip.

These methods allow you to implement predefined views very easily. To do this, start by creating some
views and saving each one by pressing the “Save” button. For this sample, we will create five views
showing sales by:

Product and Country
Salesperson and Country
Salesperson and Year
Salesperson and Month

vk wnN e

Salesperson and Weekday

Once you have crated and saved all the views, create a new XML file called “DefaultViews.xml” with a
single “OlapViews” node, then copy and paste all your default views into this document. Next, add an
“id” tag to each view and assign each one a unique name. This name will be shown in the user interface
(it is not required by C10lap). Your XML file should look like this:

<OlapViews>

<ClOlapPage id="Product vs Country">

<!-- view definition omitted... -->
<ClOlapPage id="SalesPerson vs Country">

<!-- view definition omitted... -->
<ClOlapPage id="SalesPerson vs Year">

<!-- view definition omitted... -->
<ClOlapPage id="SalesPerson vs Month">>

<!-- view definition omitted... -->
<ClOlapPage id="SalesPerson vs Weekday">

<!-- view definition omitted... -->

</OlapViews>

Now add this file to the project as a resource. To do this, right-click the project node in the solution
explorer, select the “Properties” item, then the “Resources” tab, the “Add Resource”, then “Add Existing
File...” option. Select the XML file and click OK.

Now that the view definitions are ready, we need to exposed them in a menu so the user can select
them. To do this, copy the following code into the project:

private void Forml Load(object sender, EventArgs e)
{
// no changes here

/]

// build menu with predefined views:

var doc = new System.Xml.XmlDocument () ;

doc.LoadXml (Properties.Resources.OlapViews) ;

var menuView = new ToolStripDropDownButton ("&View") ;

foreach (System.Xml.XmlNode nd in doc.SelectNodes ("OlapViews/ClOlapPage"))

{
var tsi
tsi.Tag

menuView.DropDownItems.Add (nd.Attributes["id"] .Value) ;
nd;

}
menuView.DropDownItemClicked += menuView DropDownItemClicked;
clOlapPagel.Updated += clOlapPagel Updated;

// add new view menu to ClOlapPage toolstrip
clOlapPagel.ToolStrip.Items.Insert (3, menuView) ;

The code creates a new toolstrip drop-down button, then loads the XML document with the report
definitions and populates the drop-down button with the reports found. Each item contains the view
name in its Text property, and the actual XML node in its Tag property. The node will be used later to
apply the view when the user selects it.

Once the drop-down is ready, the code adds it to the C10lapPage using the ToolStrip property. The new
button is added at position 3, after the first two buttons and the first separator.

The only part still missing is the code that will apply the views to the C10lapPage when the user selects
them by clicking the button. This is accomplished with the following code:

// select a predefined view
void menuView DropDownItemClicked (object sender, ToolStripItemClickedEventArgs e)
{
var nd = e.ClickedItem.Tag as System.Xml.XmlNode;
if (nd '= null)
{
// load view definition from XML
clOlapPagel.ViewDefinition = nd.OuterXml;

// show current view name in status bar
clOlapPagel.LabelStatus.Text = nd.Attributes["id"] .Value;

}

}
void clOlapPagel Updated(object sender, EventArgs e)

{

// clear report name after user made any changes
clOlapPagel.LabelStatus.Text = string.Empty;

The code retrieves the report definition as an XML string by reading the node’s OuterXml property, then
assigns it to the C10lapPage.ViewDefinition property. It also shows the name of the view in the
C1OlapPage status bar using the LabelStatus property.

Finally, the code handles the Updated event to clear the status bar whenever the user makes any
changes to the view. This indicates that the view no longer matches the predefined view that was
loaded from the application resources.

The C10lapPage exposes most of the components it contains, which makes customization easy. You can
add, remove or change the elements from the ToolStrip, from the TabControl, and show status
messages using the LabelStatus property. You can also add other elements to the page in addition to the
C1OlapPage.

If you need further customization, you can also choose not to use the C10lapPage at all, and build your
interface using the lower-level C10lapPanel, C10lapGrid, and C10lapChart controls. The source code
for the C10lapPage control is included with the package and can be used as a starting point. The
example in the “Building a custom User Interface” section shows how this is done.

Using LINQ as an OLAP data source
C10lap can consume any collection as a data source. It is not restricted to DataTable objects. In
particular, it can be used with LINQ.

LINQ provides an easy to use, efficient, flexible model for querying data. It makes it easy for developers
to create sophisticated queries on client applications without requiring modifications to the databases
such as the creation of new stored procedures. These queries can in turn be used as data sources for
C10lap so end users also have the ability to create their own views of the data.

To illustrate this, create a new project and add a C10lapPage control to the form. Instead of setting the
DataSource property in the designer and using a stored procedure like we did before, this time we will
load the data using a LINQ query. To do this, add the following code to the form constructor:

public Forml ()

{
// designer
InitializeComponent () ;

// load all interesting tables into a DataSet

var ds = new DataSet ();

foreach (string table in
"Products,Categories,Employees," +
"Customers,Orders,Order Details".Split(',"'))

string sgl = string.Format ("select * from [{0}]", table);
var da = new OleDbDataAdapter (sqgl, GetConnectionString())
da.Fill (ds, table):;

}

// build LINQ query and use it as a data source
// for the ClOlapPage control
//

}

// get standard nwind mdb connection string
static string GetConnectionString()

{
string path =
Environment.GetFolderPath (Environment.SpecialFolder.Personal) +
@"\ComponentOne Samples\Common";
string conn = @"provider=microsoft.jet.oledb.4.0;" +
@"data source={0}\clnwind.mdb;";
return string.Format (conn, path);

The code loads several tables from the NorthWind. It assumes the NorthWind database is available in
the “ComponentOne Samples” folder, which is where the C10lap setup places it. If you have the
database in a different location, you will have to adjust the GetConnectionString method as

appropriate.

Next, let’s add the actual LINQ query. This is a long but simple statement:

// build LINQ query
var q =
from detail in ds.Tables["Order Details"].AsEnumerable ()
join product in ds.Tables["Products"].AsEnumerable ()
on detail.Field<int> ("ProductID")
equals product.Field<int> ("ProductID")
join category in ds.Tables["Categories"].AsEnumerable ()
on product.Field<int> ("CategoryID")
equals category.Field<int> ("CategoryID")
join order in ds.Tables["Orders"].AsEnumerable ()
on detail.Field<int> ("OrderID")
equals order.Field<int> ("OrderID")
join customer in ds.Tables["Customers"].AsEnumerable ()
on order.Field<string> ("CustomerID")
equals customer.Field<string> ("CustomerID")
join employee in ds.Tables["Employees"].AsEnumerable ()
on order.Field<int> ("EmployeeID")
equals employee.Field<int> ("EmployeeID")
select new

{

Sales = (detail.Field<short>("Quantity") *
(double)detail.Field<decimal> ("UnitPrice")) *
(1 - (double)detail.Field<float>("Discount")),

OrderDate = order.Field<DateTime> ("OrderDate"),
Product = product.Field<string> ("ProductName"),

Customer = customer.Field<string> ("CompanyName"),
Country = customer.Field<string>("Country"),
Employee = employee.Field<string>("FirstName") + " " +

employee.Field<string> ("LastName"),
Category = category.Field<string>("CategoryName")
bi

// use LINQ query as DataSource for the ClOlapPage control
clOlapPagel.DataSource = g.TolList () ;

The LINQ query is divided into two parts. The first part uses several join statements to connect the
tables we loaded from the database. Each table is connected to the query by joining its primary key to a
field that is already available on the query. We start with the “Order Details” table, then join “Products”
using the “ProductID” field, then “Categories” using the “CategoryID” field, and so on.

Once all the tables are joined, a select new statement is used to build a new anonymous class containing
the fields we are interested in. Notice that the fields may map directly to fields in the tables, or they may
be calculated. The “Sales” field for example is calculated based on quantity, unit price, and discount.

Once the LINQ query is ready, it is converted to a list using LINQ’s ToList method, and the result is
assigned to the C10lapPage.DataSource property. The TolList method is required because it causes the
query to be executed. If you simply assign the query to any control’s DataSource property, you will get a
syntax error.

If you run the project now, you will see that it looks and behaves just like before, when we used a stored
procedure as a data source. The advantage of using LINQ is that the query is built into the application.
You can change it easily without having to ask the database administrator for help.

Large data sources
All the examples discussed so far loaded all the data into memory. This is a simple and convenient way
to do things, and it works in many cases.

In some cases, however, there may be too much data to load into memory at once. Consider for
example a table with a million rows or more. Even if you could load all this data into memory, the
process would take a long time.

There are many ways to deal with these scenarios. You could create queries that summarize and cache
the data on the server, or use specialized OLAP data providers. In either case, you would end up with
tables that can be used with C10lap.

But there are also simpler options. Suppose the database contains information about thousands of
companies, and users only want to see a few at a time. Instead of relying only on the filtering
capabilities of C10lap, which happen on the client, you could delegate some of the work to the server,
and load only the companies the user wants to see. This is easy to accomplish and does not require any
special software or configurations on the server.

For example, consider the following CachedDataTable class (this class is used in the “SqlFilter” sample
installed with C10lap):

/// <summary>
/// Extends the <see cref="DataTable"/> class to load and cache
/// data on demand using a <see cref="Fill"/> method that takes
/// a set of keys as a parameter.
/// </summary>
class CachedDataTable : DataTable
{
public string ConnectionString { get; set; }
public string SqglTemplate { get; set; }
public string WhereClauseTemplate { get; set; }
Dictionary<object, bool> values =
new Dictionary<object, bool>();

// constructor
public CachedDataTable (string sglTemplate,
string whereClauseTemplate, string connString)
{
ConnectionString = connString;
SglTemplate = sglTemplate;
WhereClauseTemplate = whereClauseTemplate;

}

// populate the table by adding any missing values
public void Fill (IEnumerable filterValues, bool reset)
{
// reset table if requested
if (reset)
{
~values.Clear();
Rows.Clear () ;

}

// get a list with the new values
List<object> newValues = GetNewValues (filterValues) ;
if (newValues.Count > 0)
{
// get sgl statement and data adapter
var sgl = GetSglStatement (newValues) ;
using (var da = new OleDbDataAdapter (sqgl, ConnectionString))
{
// add new values to the table
int rows = da.Fill (this):;

}
}
public void Fill (IEnumerable filterValues)

{
Fill (filterValues, false);

}

This class extends the regular DataTable class and provides a Fill method that can either repopulate the
table completely or add additional records based on a list of values provided. For example, you could
start by filling the table with two customers (out of several thousand) and then add more only when the
user requested them.

Note that the code uses an OleDbDataAdapter. This is because the sample uses an MDB file as a data
source and an OleDb-style connection string. To use this class with Sqgl Server data sources, you would
replace the OleDbDataAdapter with a SqlDataAdapter.

The code above is missing the implementation of two simple methods given below:

// gets a list with the filter values that are not already in the
// current values collection;
// and add them all to the current values collection.
List<object> GetNewValues (IEnumerable filterValues)
{
var list = new List<object>();
foreach (object value in filterValues)
{
if (! values.ContainsKey(value))
{
list.Add (value) ;
_values([value] =

}

true;

}

return list;

}

// gets a sqgl statement to add new values to the table
string GetSglStatement (List<object> newValues)
{

return string.Format (SglTemplate, GetWhereClause (newValues))

}

string GetWhereClause (List<object> newValues)

{
if (newValues.Count == || string.IsNullOrEmpty (WhereClauseTemplate))

{
return string.Empty;

}

// build list of values
StringBuilder sb = new StringBuilder():;
foreach (object value in newValues)

{
if (sb.Length > 0) sb.Append(", ");
if (value is string)

{
sb.AppendFormat ("'{0}'", ((string)value) .Replace("'", "'"'"));

}

else

{
sb.Append (value) ;

}
}

// build where clause
return string.Format (WhereClauseTemplate, sb);

The GetNewValues method returns a list of values that were requested by the user but are still not
present in the DataTable. These are the values that need to be added.

The GetSgkStatement method builds a new SQL statement with a WHERE clause that loads the records
requested by the user that haven’t been loaded yet. It uses string templates provided by the caller in the
constructor, which makes the class general.

Now that the CachedDataTable is ready, the next step is to connect it with C10lap and enable users to
analyze the data transparently, as if it were all loaded in memory.

To do this, open the main form, add a C10lapPage control to it, then add the following code to the
form:

public partial class Forml : Form

{
List<string> _customerList;
List<string> _activeCustomerList;
const int MAX CUSTOMERS = 12;

These fields will contain a complete list of all the customers in the database, a list of the customers
currently selected by the user, and the maximum number of customers that can be selected at any time.
Set the maximum number of customers to a relatively small value to prevent users from loading too
much data into the application at once.

Next, we need to get a complete list of all the customers in the database so the user can select the ones
he wants to look at. Note that this is a long list but compact list. It contains only the customer name, not
any of the associated details such as orders, order details, etc. Here is the code that loads the full
customer list:

public Forml ()
{

InitializeComponent () ;

// get complete list of customers
_customerList = new List<string>();
var sgl = @Q"SELECT DISTINCT Customers.CompanyName" +
"AS [Customer] FROM Customers";
var da = new OleDbDataAdapter (sqgl, GetConnectionString())
var dt = new DataTable () ;
da.Fill (dt);
foreach (DataRow dr in dt.Rows)
{

_customerList.Add((string)dr["Customer"]) ;

}

Next, we need a list that contains the customers that the customer wants to look at. We persist this list
as a property setting, so it is preserved across sessions. The setting is called “Customers” and is of type
“StringCollection”. You create this by right clicking the project node in the solution explorer, selecting
“Properties”, then the “Settings” tab as before:

Application Synchronize | %7l Load Web Settings [=] View Code ';'
Build
Application settings allow you to store and retrieve property settings and other
Build Events information for your application dynamically. For example, the application can save
a user's color preferences, then retrieve them the next time it runs, Learn more
Debug about application settings...
Resources
Mame Type Scope Value s
Servi
o 3 Customers [System.CoII... |'[User |v|<?xml E]
Settings £ String Collection Editor - @Iﬂ
Ref Path
e . Enter the strings in the collection (one per ling):

Signing Hanari Carnes -

Hungry Coyote Import Store
Security Island Trading

Laughing Bacchus Wine Cellars
Publish Rancho grande

La maison d'Asie
Code Analysis La corne d abondancel i

4 3

And here is the code that loads the “active” customer list from the new setting:

// get active customer list
_activeCustomerList = new List<string>();
foreach (string customer in Settings.Default.Customers)
{
_activeCustomerList.Add (customer) ;

}

Now we are ready to create a CachedDataTable and assign it to the C1OlapPage.DataSource property:

// get data into the CachedDataTable

var dtSales = new CachedDataTable (
Resources.SqglTemplate,
Resources.WhereTemplate,
GetConnectionString());

dtSales.Fill(activeCustomerList);

// assign data to ClOlapPage control
_clOlapPage.DataSource = dtSales;

// show default view

var olap = clOlapPage.OlapEngine;
olap.BeginUpdate () ;
olap.RowFields.Add ("Customer") ;
olap.ColumnFields.Add ("Category") ;
olap.ValueFields.Add("Sales") ;
olap.EndUpdate () ;

The CachedDataTable constructor uses three parameters:

e SqglTemplate
This is a standard SQL SELECT statement where the “WHERE” clause is replaced by a
placeholder. The statement is fairly long, and is defined as an application resource. To see the
actual content please refer to the “SqlFilter” sample.

e WhereTemplate
This is a standard SQL WHERE statement that contains a template that will be replaced with the
list of values to include in the query. It is also defined as an application resource which contains
this string: “WHERE Customers.CompanyName in ({0})".

e ConnectionString
This parameter contains the connection string that is used to connect to the database. Our
sample uses the same GetConnectionString method introduced earlier, that returns a reference
to the NorthWind database installed with C10Olap.

Now that the data source is ready, we need to connect it to C10lap to ensure that:

1. The user can see all the customers in the C10lap filter (not just the ones that are currently
loaded) and
2. When the user modifies the filter, new data is loaded to show any new customers requested.

To accomplish item 1, we need to assign the complete list of customers to the C10lapField.Values
property. This property contains a list of the values that are displayed in the filter. By default, C10lap
populates this list with values found in the raw data. In this case, the raw data contains only a partial list,
so we need to provide the complete version instead.

To accomplish item 2, we need to listen to the C10lapField.PropertyChanged event, which fires when
the user modifies any field properties including the filter. When this happens, we retrieve the list of
customers selected by the user and pass that list to the data source.

This is the code that accomplishes this:

// custom filter: customers in the list, customers currently active
var field = olap.Fields["Customer"];

var filter = field.Filter;

filter.vValues = customerList;

filter.ShowValues = activeCustomerList.ToArray();
filter.PropertyChanged += filter PropertyChanged;

And here is the event handler that updates the data source when the filter changes:

// re-query database when list of selected customers changes
void filter PropertyChanged(object sender, PropertyChangedEventArgs e)
{

// get reference to parent filter

var filter = sender as Cl.0Olap.ClOlapFilter;

// get list of values accepted by the filter
_activeCustomerList.Clear();
foreach (string customer in customerList)
{

if (filter.Apply (customer))

{

_activeCustomerList.Add (customer) ;

}

}

// skip if no values were selected
if (_activeCustomerList.Count == 0)
{
MessageBox.Show (
"No customers selected, change will not be applied.",
"No Customers") ;
return;

}

// trim list if necessary
if (_activeCustomerList.Count > MAX CUSTOMERS)
{
MessageBox.Show (
"Too many customers selected, list will be trimmed.",
"Too Many Customers");
_activeCustomerList.RemoveRange (MAX CUSTOMERS,
_activeCustomerList.Count - MAX CUSTOMERS) ;
}

// get new data
var dt = clOlapPage.DataSource as CachedDataTable;
dt.Fill(_activeCustomerList) ;

The code starts by retrieving the field’s Filter and then calling the filter’'s Apply method to build a list of
customers selected by the user. After some bounds-checking, the list is passed to the CachedDataTable
which will retrieve any missing data. After the new data is loaded, the C10lapPage is notified and
automatically refreshes the view.

Before running the application, there is one last item to consider. The field’s Filter property is only taken
into account by the C10lapEngine if the field in “active” in the view. “Active” means the field is a
member of the RowFields, ColumnFields, ValueFields, or FilterFields collections. In this case, the
“Customers” field has a special filter and should always be active. To ensure this, we must handle the
engine’s Updating event and make sure the “Customers” field is always active.

Here is the code that ensures the “Customers” field is always active:

public Forml ()
{

InitializeComponent () ;
// ** no changes here **

// make sure Customer field is always in the view
// (since it is always used at least as a filter)
_clOlapPage.Updating += _clOlapPage_Updating;

}

// make sure Customer field is always in the view

// (since it is always used at least as a filter)
void _clOlapPage Updating(object sender, EventArgs e)

{
var olap = _clOlapPage.OlapEngine;
var field = olap.Fields["Customer"];
if ('field.IsActive)
{
olap.FilterFields.Add (field) ;
}
}

If you run the application now, you will notice that only the customers included in the “Customers”

setting are included in the view:

-
ol MorthWind Sales Data Analysis (Sql filtered) =[5
5 I | [Grid + |2 Chart = 3] Report -
Choose fields to add to table: i {| Olap Chart | Raw Data |
Category o | Beverages Condiments Confections |
Country Hanari Carnes 20,084 2379 1,212
e Hungry Coyote Import Store 0 0 2,005
Employes B
- Island Trading 1417 1,655 145
La cormne d'abondance 408 Q 1,000
Product i . -
j— La maison d'Asie 1,903 775 2,086
Drag fields between areas below: Laughing Bacchus Wine Cellars 98 52 70 l
<7 Filter B Column Fields Rancho grande 527 285 749
Category izt 24,526 5,146 7.357
2 Row Fields E Values
L] m 3
126 Records .||

This looks like the screens shown before. The difference is that this time the filtering is done on the
server. Data for most customers has not even been loaded into the application.

To see other customers, right-click the “Customer” field and select “Field Settings”, then edit the filter
by selecting specific customers or by defining a condition as shown below:

-
ol Field Settings: Customer

Text Fitter -

% Clear Fitter

Equals...

Does Not Equal...
Begins With ..
Ends With...
Cortains...

-

Custom Filter

Show items where the value:

[starts With

@ And O Or

’None

Custom Filter....

Does Not Contain.... ;

(i

i || Bottom-Dollar Markets

When you click OK, the application will detect the change and will request the additional data from the
CachingDataTable object. Once the new data has been loaded, C10lap will detect the change and

update the OLAP table automatically:

o) NorthWind Sales Data Analysis (Sql filtered) e e
5 | | [Grid - |22 Chart + &3] Report -
Choose fields to add to table: Qlap Grid Olap Chart | Raw Data
Category i Beverages Condiments
Country e T 20,084 2379
SrirE £||| HILARIGN-Abastos 3,136 351
=
En’:jp| DE;:: Hungry Coyote Import Store 0 0
raerate Hungry Owl All-Night Grocers 3,145 3478
Product v
= Total 26,366 6.207

Drag fields between areas below:
¥ Filter ZH Column Fields

Category

T Values

EEI

Row Fields

3

420 Records .:

Building a custom User Interface

The examples in previous sections all used the C10lapPage control, which contains a complete Ul and
requires little or no code. In this section, we will walk through the creation of an OLAP application that
does not use the C10lapPage. Instead, it creates a complete custom Ul using the C10lapGrid,

C1OlapChart, and some standard .NET controls.

The complete source code for this application is included in the “CustomUl” sample installed with
ClOlap.

The image below shows the application in design view:

5! C10lap: Custom User Interface E=nEER==
My Custom Olap Application
View Sales by:
=
a -
Salesperson b I
24 =]
J] i
Product - : 4 i
20 -
u] st b #® |
Country EChoose fields to add to table: » 184 ®
Price Filter: | W Address i R . -ﬁ & +
S55 Expensive [City < b3 ok =
55 Moderate [Country 14 4
. [T CustomerlD - i
§ Inexpensive _ i o
- Drag fields between areas below: <
* All Prices L
“ Fitter Z5 Column Fields oy s
= | !
8 — T T
Create Report... 1] Row Fields X Values 1 2 3 4 5
Aeis X
(] u

There is a panel docked to the top of the form showing the application title. There is a vertical toolstrip
control docked to the right of the form with three groups of buttons. The top group allows users to pick
one of three pre-defined views: sales by salesperson, by product, or by country. The next group allows
users to apply a filter to the data based on product price (expensive, moderate, or inexpensive). The last
button provides reporting.

The remaining area of the form if filled with a split container showing a C10lapGrid on the left and a
C1OlapChart on the right. These are the controls that will display the view currently selected.

The form also contains a C10lapPrintDocument component that will be used to generate the reports.
This component is not visible in the image above because it only appears in the tray area below the
form. The C10lapPrintDocument is connected to the OLAP controls on the page by its OlapGrid and
OlapChart properties, which were set at design time.

Finally, there is a C10lapPanel control on the form. Its Visible property is set to false, so users won’t
ever see it. This invisible control is used as a data source for the grid and the chart, and is responsible for
filtering and summarizing the data. Both the grid and the chart have their DataSource property set to
the C10lapPanel.

Once all the controls are in place, let’s add the code that connects them all and makes the application
work.

First, let’s get the data and assign it to the C10lapPanel:

private void Forml Load(object sender, EventArgs e)
{
// load data
var da = new OleDbDataAdapter ("select * from Invoices",
GetConnectionString());
var dt = new DataTable () :;
da.Fill(dt);

// assign it to ClOlapPanel that is driving the app
this.clOlapPanell.DataSource = dt;

// start with the SalesPerson view, all products
_btnSalesperson.PerformClick();
_btnAllPrices.PerformClick();

The code gets the data from the NorthWind database using a DataAdapter and assigns the resulting
DataTable to the C10lapPanel.DataSource property. It then uses the PerformClick method to simulate
clicks on two buttons to initialize the current view and filter.

The event handlers for the buttons that select the current view look like this:

void btnSalesperson Click (object sender, EventArgs e)
{

CheckButton (sender) ;

BuildvView ("Salesperson") ;
}
void btnProduct Click(object sender, EventArgs e)
{

CheckButton (sender) ;

BuildView ("ProductName") ;
}
void btnCountry Click(object sender, EventArgs e)
{

CheckButton (sender) ;

BuildView ("Country") ;

All handlers use a BuildView helper method given below:

// rebuild the view after a button was clicked
void BuildView (string fieldName)

{

immediately calls the BeginUpdate method to stop updates until the new view has been completely

// get olap engine
var olap = clOlapPanell.OlapEngine;

// stop updating until done
olap.BeginUpdate () ;

// format order dates to group by year
var £ = olap.Fields["OrderDate"];
f.Format = "yyyy";

// clear all fields
olap.RowFields.Clear () ;
olap.ColumnFields.Clear () ;
olap.ValueFields.Clear () ;

// build up view
olap.ColumnFields.Add ("OrderDate") ;
olap.RowFields.Add (fieldName) ;
olap.ValueFields.Add ("ExtendedPrice") ;

// restore upadtes
olap.EndUpdate () ;

The BuildView method gets a reference to the C10lapEngine object provided by the C10lapPanel and

defined. This is done to improve performance.

rebuilds view by clearing the engine’s RowFields, ColumnFields, and ValueFields collections, then
adding the fields that should be displayed. The “fieldName” parameter passed by the caller contains the
name of the only field that changes between views in this example.

Before running the application, let’s look at the code that implements filtering. The event handlers look

The code then sets the format of the “OrderDate” field to “yyyy” so sales are grouped by year and

When all this is done, the code calls EndUpdate so the C10lapPanel will update the output table.

like this:

void btnExpensive Click (object sender, EventArgs e)
{
CheckButton (sender) ;
SetPriceFilter ("Expensive Products (price > $50)", 50, double.MaxValue) ;
}
void btnModerate Click(object sender, EventArgs e)
{
CheckButton (sender) ;
SetPriceFilter ("Moderately Priced Products ($20 < price < $50)", 20, 50);
}
void btnInexpensive Click (object sender, EventArgs e)
{
CheckButton (sender) ;
SetPriceFilter ("Inexpensive Products (price < $20)", 0, 20);
}
void btnAllProducts Click (object sender, EventArgs e)
{
CheckButton (sender) ;
SetPriceFilter ("All Products", 0, double.MaxValue);

All handlers use a SetPriceFilter helper method given below:

// apply a filter to the product price
void SetPriceFilter (string footerText, double min, double max)
{

// get olap engine

var olap = clOlapPanell.OlapEngine;

// stop updating until done
olap.BeginUpdate () ;

// make sure unit price field is active in the view
var field = olap.Fields["UnitPrice"];
olap.FilterFields.Add (field) ;

// customize the filter to apply the condition

var filter = field.Filter;

filter.Clear () ;

filter.Conditionl.Operator =
Cl.0lap.ConditionOperator.GreaterThanOrEqualTo;

filter.Conditionl.Parameter = min;

filter.Condition2.0Operator =
Cl.0lap.ConditionOperator.LessThanOrEqualTo;

filter.Condition2.Parameter = max;

// restore upadtes
olap.EndUpdate () ;

// set report footer
clOlapPrintDocumentl.FooterText = footerText;

As before, the code gets a reference to the C10lapEngine and immediately calls BeginUpdate.

It then gets a reference to the “UnitPrice” field that will be used for filtering the data. The “UnitPrice”
field is added to the engine’s FilterFields collection so the filter will be applied to the current view.

This is an important detail. If a field is not included in any of the view collections (RowFields,
ColumnfFields, ValueFields, FilterFields), then it is not included in the view at all, and its Filter property
does not affect the view in any way.

The code proceeds to configure the Filter property of the “UnitPrice” field by setting two conditions that
specify the range of values that should be included in the view. The range is defined by the “min” and
“max” parameters. Instead of using conditions, you could provide a list of values that should be
included. Conditions are usually more convenient when dealing with numeric values, and lists are better
for string values and enumerations.

Finally, the code calls EndUpdate and sets the FooterText property of the C10lapPrintDocument so it
will be automatically displayed in any reports.

The methods above use another helper called CheckButton that is listed below:

// show which button was pressed

void CheckButton (object pressedButton)

{
var btn = pressedButton as ToolStripButton;
btn.Checked = true;

var items = btn.Owner.Items;
var index = items.IndexOf (btn);
for (int 1 = index + 1; i < items.Count; i++)

if (! (items[i] is ToolStripButton)) break;
((ToolStripButton)items[i]) .Checked = false;

for (int i = index - 1; 1 > 0 && !(items[i] is ToolStripSeparator); i--)
{
if (! (items[i] is ToolStripButton)) break;
((ToolStripButton)items[i]) .Checked = false;

This method makes the buttons in the toolstrip behave like radio buttons. When one of them is pushed,
all others in the same group are released.

The application is almost ready. You can run it now and test the different views and filtering capabilities
of the application, as illustrated below:

o5 C1Olap: Custom User Interface

View Sales by:

&

Salesperson

55 Moderate

§ Inexpensive

* All Prices

==

EEELEL

Create Report...

My Custom Olap Application

1994

Argentina

Austria 13,170
Belgium 6,307
Brazil 9,909
Canada 5141
Denmark 1,187
Finland 3116
France 17,300
Germany 33417
Ireland 6,443
Italy 520
Mexico 4688
Norway

Poland

Portugal 1,585
Spain 2,976
Sweden 4608
Switzerland 3.047
UK 282
usa 29,182

1395

1.804
50,373
8.483
46517
33520
2231
12,461
37971
106.012
23135
6,440
14,349
1,758
1.267
7191
3.952
24187
13,438
24203
120,259

1396
6315
53454
13,023
E0.500
11,526
9143
3233
26,088
30.856
20,402
2350
4545
3977
2265
2652
11,055
25,700
3147
28486
96,144

m

Argentina
Austria
Belgium
Brazil
Canada
Denmark
Finland
France
Germany
Ireland
Italy
Mexico
Morway
Poland
Portugal
Spain
Sweden
Switzerland
UK

usa
Venezuela

0

T T
100,000 200,000 300,000

Rk
Bl 1995
I 1996

View showing sales for all products, grouped by year and country. Notice how the chart shows values
approaching $300,000.

If you click the “SSS Expensive” button, the filter is applied and the view changes immediately. Notice
how now the chart shows values approaching $80,000 instead. Expensive values are responsible for
about one third of the sales:

a5l C10lap: Custom User Interface | B et
My Custom Olap Application
View Sales by: 1994 1995 1996 -
= Argentina 431 2,147]
8 Bustria 12,437 6.406 13,342 r’“ﬂf"‘{”.ﬂ
. Ustria
Salesperson Belgium 2,462 4,840 B’;lgium
. Brazil 2,781 12212 22797 Brazil
Lj Canada 1,600 5,308 1272 Canada
Product | Denmark 12,144 2133 Denmark
—— | Finland 2407 550 France
@ France 6,523 8,043 8376 Germany
Country Germany 25,709 42622 : |Fe||?:|i 1954
Ireland 10,164 15,924 Mex B 1995
. . lexico
Price Filter: | ltaly 523 1.030 Norway [13996
$95 Expensive || Mexico 996 4635 1,060 Poland
blomgy 500 2,108 Partugal
55 Mq 5585 Expensive 4 l1DB Spain
- e Sweden
$Inexpensive | porygal 1.238 Switzerland
* All Prices | Spain 2476 2977 UK
. Sweden 9,947 7.585 . U5|¢~
j= Switzerland 6,285 b enezusa T T T
o : n UK 4783 4836 0 20000 40,000 60,000 20,000
ﬂ reate Report... ;e 7747 27364 snan|

The last piece missing from the application is reporting. Users can already copy data from the OlapGrid,
paste it into Excel, and print or save the results. But we can make it even easier, by allowing them to

print or create PDF files directly from within the application.

To do this, let us add some code to handle clicks in the “Report...” button. The code is very simple:

void btnReport Click(object sender, EventArgs e)
{
using (var dlg = new Cl.Win.Olap.ClOlapPrintPreviewDialog())
{
dlg.Document = clOlapPrintDocumentl;
dlg.StartPosition = FormStartPosition.Manual;
dlg.Bounds = this.Bounds;
dlg.ShowDialog (this) ;

If you have done any printing in .NET, the code should look familiar. It starts by instantiating a

C1O0lapPrintPreviewDialog. This is a class similar to the standard PrintPreviewDialog, but with a few

enhancements that include export to PDF capability.

The code then sets the dialog’s Document property, initializes its position, and shows the dialog. If you

run the application now and click the “Report...” button, you should see a dialog like the one belo

w:

Print Preview =
-

[S] |

S B O |[&Zoom ~j4 4 1 of2 b P X Close

WERE WEeiwHRE
onn
[T

B Fraticn e P

—

From this dialog, users can modify the page layout, print or export the document to PDF.

Configuring Fields in Code

One of the main strengths in Olap applications is interactivity. Users must be able to create and modify

views easily and quickly see the results. C10lap enables this with its Excel-like user interface and user

friendly, simple dialogs.

But in some cases you may want to configure views using code. C10lap enables this with its simpl
powerful object model, especially the Field and Filter classes.

eyet

The example that follows shows how you can create and configure views with C10lap.
Start by creating a new WinForms application adding a C10lapPage control to the form.

Switch to code view and add the following code to load some data and assign it to the C10lapPage
control:

public Forml ()
{

InitializeComponent () ;

// get data

var da = new OleDbDataAdapter ("select * from invoices",
GetConnectionString()) ;

var dt = new DataTable () :;

da.Fill(dt);

// bind to olap page
this.clOlapPagel.DataSource = dt;

// build initial view
var olap = this.clOlapPagel.OlapEngine;
olap.ValueFields.Add ("ExtendedPrice") ;
olap.RowFields.Add ("ProductName", "OrderDate");
}
static string GetConnectionString()
{
string path = Environment.GetFolderPath (
Environment.SpecialFolder.Personal) +
@"\ComponentOne Samples\Common";
string conn = @"provider=microsoft.jet.oledb.4.0;data source={0}\clnwind.mdb;";
return string.Format (conn, path);

The code loads the “Invoices” view from the NorthWind database (installed with C10lap), binds the data
to the C10lapPage control, and builds an initial view that shows the sum of the “ExtendedPrice” values
by product and by order date. This is similar to the examples given above.

If you run the sample now, you will see an Olap view including all the products and dates.

Next, let’s use the C10lap object model to change the format used to display the order dates and
extended prices:

public Forml ()
{

InitializeComponent () ;

// get data
// no change..

// bind to olap page
// no change..

// build initial view
// no change..

// format order date
var field = olap.Fields["OrderDate"];
field.Format = "yyyy";

// format extended price and change the Subtotal type
// to show the average extended price (instead of sum)
field = olap.Fields["ExtendedPrice"];

field.Format = "c"

field.Subtotal = Cl.0Olap.Subtotal.Average;

The code retrieves the individual fields from the Fields collection which contains all the fields specified
in the data source. Then it assigns the desired values to the Format and Subtotal properties. Format
takes a regular .NET format string, and Subtotal determines how values are aggregated for display in the
Olap view. By default, values are added, but many other aggregate statistics are available including
average, maximum, minimum, standard deviation, and variance.

Now suppose you are interested only in a subset of the data, say a few products and one year. A user
would right-click the fields and apply filters to them. You can do the exact same thing in code as shown
below:

public Forml ()
{

InitializeComponent () ;

// get data
// no changes..

// bind to olap page
// no changes..

// build view
// no changes..

// format order date and extended price
// no changes..

// apply value filter to show only a few products
Cl.0Olap.ClOlapFilter filter = olap.Fields["ProductName"].Filter;
filter.Clear() ;

filter.ShowValues = "Chai,Chang,Geitost,Ikura".Split(',"');

// apply condition filter to show only some dates

filter = olap.Fields["OrderDate"].Filter;

filter.Clear() ;

filter.Conditionl.Operator =
Cl.Olap.ConditionOperator.GreaterThanOrEqualTo;

filter.Conditionl.Parameter = new DateTime (1996, 1, 1);

filter.Condition2.0Operator =
Cl.0Olap.ConditionOperator.LessThanOrEqualTo;

filter.Condition2.Parameter = new DateTime (1996, 12, 31);

filter.AndConditions = true;

The code starts by retrieving the C10lapFilter object that is associated with the “ProductName” field.
Then it clears the filter and sets its ShowValues property. This property takes an array of values that
should be shown by the filter. In C10lap we call this a “value filter”.

Next, the code retrieves the filter associated with the “OrderDate” field. This time, we want to show
values for a specific year. But we don’t want to enumerate all days in the target year. Instead, we use a
“condition filter” which is defined by two conditions.

The first condition specifies that the “OrderDate” should be greater than or equal to January 1, 1996.
The second condition specifies that the “OrderDate” should be less than or equal to December 31,
1996. The AndConditions property specifies how the first and second conditions should be applied (AND
or OR operators). In this case, we want dates where both conditions are true, so AndConditions is set to
true.

If you run the project again, you should see the following:

Configure Fields in

= | Grid

Choose fields to add to table:

ity
Country
CustemerlD

= |t Chart = Report ~

Olap Grid | Olap Chart | Raw Data

[F1 Ciictarmere Camnamiflams i
M| Crag fields between areas below:
Il 7 Filter £ Column Fields

{2 Row Fields

||| Productiame

Total

CrderDate ExtendedPrice Total
Chai 1996 $393.47 $393.47
Chang 1906 1354.78 $354.78
Geitost 1986 £47.66 $47.66
Tkura 1996 181649 $816.49

$412.98

2155 Records

