
ComponentOne OLAP

What is C1Olap
C1Olap is a suite of .NET controls that provide analytical processing features similar to those found in

Microsoft Excel’s Pivot Tables and Pivot Charts.

C1Olap takes raw data in any format and provides an easy-to-use interface so users can quickly and

intuitively create summaries that display the data in different ways, uncovering trends and providing

valuable insights interactively. As the user modifies the way in which he wants to see the data, C1Olap

instantly provides grids, charts, and reports that can be saved, exported, or printed.

Introduction to Olap
Olap means “online analytical processing”. It refers to technologies that enable the dynamic

visualization and analysis of data.

Typical Olap tools include “Olap cubes”, and pivot tables such as the ones provided by Microsoft Excel.

These tools take large sets of data and summarize it by grouping records based on a set of criteria. For

example, an Olap cube might summarize sales data grouping it by product, region, and period. In this

case, each grid cell would display the total sales for a particular product, in a particular region, and for a

specific period. This cell would normally represent data from several records in the original data source.

Olap tools allow users to redefine these grouping criteria dynamically (on-line), making it easy to

perform ad-hoc analysis on the data and discover hidden patterns.

For example, consider the following table:

Date Product Region Sales

Oct 2007 Product A North 12

Oct 2007 Product B North 15

Oct 2007 Product C South 4

Oct 2007 Product A South 3

Nov 2007 Product A South 6

Nov 2007 Product C North 8

Nov 2007 Product A North 10

Nov 2007 Product B North 3

Now suppose you were asked to analyze this data and answer questions such as:

 Are sales going up or down?

 Which products are most important to the company?

 Which products are most popular in each region?

In order to answer these simple questions, you would have to summarize the data to obtain tables such

as these:

Sales by Date and by Product

Date Product A Product B Product C Total

Oct 2007 15 15 4 34

Nov 2007 16 3 8 27

Total 31 18 12 61

Sales by Product and by Region

Product North South Total

Product A 22 9 31

Product B 18 18

Product C 8 4 12

Total 48 13 61

Each cell in the summary tables represents several records in the original data source, where one or

more values fields are summarized (sum of sales in this case) and categorized based on the values of

other fields (date, product, or region in this case).

This can be done easily in a spreadsheet, but the work is tedious, repetitive, and error-prone. Even if you

wrote a custom application to summarize the data, you would probably have to spend a lot of time

maintaining it to add new views, and users would be constrained in their analyses to the views that you

implemented.

OLAP tools allow users to define the views they want interactively, in ad-hoc fashion. They can use pre-

defined views or create and save new ones. Any changes to the underlying data are reflected

automatically in the views, and users can create and share reports showing these views. In short, OLAP

is a tool that provides flexible and efficient data analysis.

C1Olap Architecture
C1Olap includes the following controls:

C1OlapPage
The C1OlapPage control is the easiest way to develop OLAP applications quickly and easily. It provides a

complete OLAP user interface built using the other controls in C1Olap. The C1OlapPage object model

exposes the inner controls, so you can easily customize it by adding or remove interface elements. If you

want more extensive customization, the source code is included and you can use it as a basis for your

own implementation.

The diagram below shows how the C1OlapPage is organized:

C1OlapPanel
The C1OlapPanel control is the core of the C1Olap product. It has a DataSource property that takes raw

data as input, and an OlapTable property that provides custom views summarizing the data according

to criteria provided by the user. The OlapTable is a regular DataTable object that can be used as a data

source for any regular control.

The C1OlapPanel also provides the familiar, Excel-like drag and drop interface that allows users to

define custom views of the data. The control displays a list containing all the fields in the data source,

and users can drag the fields to lists that represent the row and column dimensions of the output table,

the values summarized in the output data cells, and the fields used for filtering the data.

At the core of the C1OlapPanel control, there is a C1OlapEngine object that that is responsible for

summarizing the raw data according to criteria selected by the user. These criteria are represented by

C1OlapField objects, which contain a connection a specific column in the source data, filter criteria,

formatting and summary options. The user creates custom views by dragging C1OlapField objects from

the source Fields list to one of four auxiliary lists: the RowFields, ColumnFields, ValueFields, and

FilterFields lists. Fields can be customized using a context menu.

Notice that the C1Olap architecture is open. The C1OlapPanel takes any regular collection as a

DataSource, including data tables, generic lists, and LINQ enumerations; it then summarizes the data

and produces a regular DataTable as output. C1Olap includes two custom controls that are optimized

for displaying the OLAP data, the C1OlapGrid and C1OlapChart, but you could use any other control as

well.

C1OlapPage

ToolStrip (load, save, configure view, generate reports)

StatusStrip

C1OlapPanel TabControl (grid, chart, raw data)

C1OlapGrid C1OlapChart C1OlapEngine

 OLAP

Data

Raw

Data

C1OlapGrid
The C1OlapGrid control is used to display OLAP tables. It extends the C1FlexGrid control and provides

automatic data binding to C1OlapPanel objects, grouped row and column headers, as well as custom

behaviors for resizing columns, copying data to the clipboard, and showing details for any given cell.

The C1OlapGrid control extends the C1FlexGrid control, our general-purpose grid control. This means

the whole C1FlexGrid object model is also available to C1Olap users. For example, you can export the

grid contents to Excel or use styles and owner-draw cells to customize the grid’s appearance.

C1OlapChart
The C1OlapChart control is used to display OLAP charts. It extends the C1Chart control and provides

automatic data binding to C1OlapPanel objects, automatic tooltips, chart type and palette selection.

The C1OlapChart control extends the C1Chart control, our general-purpose charting control. This means

the whole C1Chart object model is also available to C1Olap users. For example, you can export the chart

to different file formats including PNG and JPG or customize the chart styles and interactivity.

C1OlapPrintDocument
The C1OlapPrintDocument component is used to create reports based on OLAP views. It extends the

PrintDocument class and provides properties that allow you to specify content and formatting for

showing OLAP grids, charts, and the raw data used to create the report.

Quickstart
This section presents code walkthroughs that start with the simplest C1Olap application and progress to

introduce commonly used features.

An Olap application with no code
To create the simplest C1Olap application, start by creating a new Windows Forms application and

dragging a C1OlapPage control onto the form. Notice that the C1OlapPage control automatically docks

to fill the form, which should look like this:

Now, let us select a data source for the application. Select the C1OlapPage control and activate the

smart designer by clicking the small triangle that appears at the top right corner of the control. Use the

combo box next to “Choose Data Source” to create a project data source and assign it to the control.

For this sample, find the Northwind database and select the “Invoices” view as shown below:

Note that as soon as you select the data source, the fields available appear in the C1OlapPanel on the

left of the form.

The application is now ready. The following sections describe the functionality provided by default,

without writing a single line of code.

Creating OLAP Views

Run the application and you will see an interface similar to the one in Microsoft Excel. Drag the

“Country” field to the “Row Fields” list and “ExtendedPrice” to the “Value Fields” list, and you will see a

summary of prices charged by country as shown below:

Click the “Olap Chart” tab and you will see the same data in chart format, showing that the main

customers are the US, Germany, and Austria.

Now drag the “SalesPerson” field into the “Column Fields” list to see a new summary, this time of sales

per country and per sales person. If you still have the chart tab selected, you should be looking at a chart

similar to the previous one, except this time the bars are split to show how much was sold by each

salesperson:

Move the mouse over the chart and you will see tooltips that show the name of the salesperson and the

amount sold when you hover over the chart elements.

Now create a new view by swapping the “SalesPerson” and “Country” fields by dragging them to the

opposite lists. This will create a new chart that emphasizes salesperson instead of country:

The chart shows that Margaret Peacock was the top salesperson in the period being analyzed, followed

closely by Janet Leverling and Nancy Davolio.

Multiple Value Fields

By default, C1Olap is configured to allow only one value field per view. When the user adds a value field

to the Values list in the C1OlapPanel, the new field replaces any pre-existing ones.

In some cases, you may want to allow users to summarize multiple value fields at once. To enable this,

you have to modify the value of the MaxItems property on the C1OlapEngine.ValueFields collection. For

example, the code below initializes a C1OlapPage to display a summary of sales price and freight by

country and by salesperson:

// get a reference to the olap engine

var olap = this.c1OlapPage1.OlapEngine;

// allow up to two value fields

olap.ValueFields.MaxItems = 2;

// summarize ExtendedPrice and Freight

olap.ValueFields.Add("ExtendedPrice", "Freight");

// by Country and by SalesPerson

olap.RowFields.Add("Country");

olap.ColumnFields.Add("SalesPerson");

The result is shown below:

Note that the MaxItems property can also be used to limit the maximum number of fields that the user

can add to the RowFields, ColumnFields, and FilterFields collections. By default, MaxItems is set to 1 for

the ValueFields collection and to -1 on all others (which means allow any number of fields).

Conditional Field Formatting

In many applications it may be useful to highlight cells on the grid according to the values they contain.

For example, you may want to show values above a specific threshold with a green background or using

a bold font.

C1Olap supports conditional formatting with three style properties available on the C1OlapField class:

C1OlapField.Style: This property contains a style that is applied by default to cells that display the field

values. It is mostly useful in views that contain multiple value fields, so users can easily see which

columns belong to each value field.

C1OlapField.StyleHigh: This property contains a style that is applied to cells that contain values above a

specified threshold. The threshold may be a specific value (e.g. 1,000) or it may be specified as a

percentage (e.g. 90%). It is often useful to specify thresholds as percentages because they automatically

adapt to the range of values being displayed. For example, a high threshold specified as 90% will apply

the style to values between 90 and 100 if the field contains values between 0 and 100, and will apply the

style to values between 900 and 1,000 if the field contains values between 0 and 1,000.

C1OlapField.StyleLow: This property contains a style that is applied to cells that contain values below a

specified threshold. Again, the threshold may be a specific value (e.g. 10) or it may be specified as a

percentage (e.g. 10%).

The code below creates conditional styles for all value fields in the view and causes cells in the bottom

10% of the value range to be displayed in red, and cells in the top 10% of the value range to be displayed

in green:

// set up conditional formats in code

foreach (var f in olap.ValueFields)

{

 // show bottom 10% values in bold with a red background

 var sl = f.StyleLow;

 sl.ConditionType = C1.Olap.ConditionType.Percentage;

 sl.Value = 0.1;

 sl.BackColor = Color.FromArgb(255, 230, 230);

 sl.FontBold = true;

 // show top 10% values in bold with a green background

 var sh = f.StyleHigh;

 sh.ConditionType = C1.Olap.ConditionType.Percentage;

 sh.Value = 0.9;

 sh.BackColor = Color.FromArgb(230, 255, 230);

 sh.FontBold = true;

}

The result is shown below:

Conditional formats may also be created and edited at run-time by users. Right-clicking a field in the

C1OlapPanel and selecting the “Field Settings…” option from the context menu brings up the field

properties dialog, which contains tabs for the Style, StyleHigh, and StyleLow properties of the field.

This is what the field editor looks like:

In addition to C1Olap’s built-in conditional formatting capabilities, remember that the C1OlapGrid

control derives from the C1FlexGrid grid, which means you can use all the C1FlexGrid features in your

C1Olap applications. These features include owner-draw cells which allow for complete customization

over how cells are displayed to the user. For example, you could easily customize the grid to shows icons

for high and low values.

Creating OLAP Reports

This is an interesting chart, so let’s create a report that we can e-mail to other people in the company.

Click the “Report” button at the top of the page and you will see a preview showing the data on the first

page and the chart on the second page. In the preview dialog, click the “Page Setup” button and change

the page orientation to landscape. The report should look like this:

Now you can print the report or click the “Export to PDF” button to generate a PDF file that you can

send to others or post on the web.

Close the preview window and save this view by clicking the “Save” button. You can create and save as

many views as you like.

Copying data to Excel

The built-in reports are convenient, but in some cases you may want to copy some or all the data to

Excel so you can perform additional analyses including regressions, create customized reports by

annotating the data or adding custom charts.

The C1OlapGrid supports the clipboard by default, so you can simply select the data you are interested

in, press Control + C, then paste it directly into an Excel sheet. The row and column headers are included

with the data.

Summarizing Data

Before we move on to the next example, let’s create a new view to illustrate how you can easily

summarize data in different ways.

This time, drag the “SalesPerson” field to the “Row Fields” list and the “OrderDate” field to the “Column

Fields” list. The resulting view contains one column for each day when an order was placed. This is not

very useful information, because there are too many columns to show any trends clearly. We would like

to summarize the data by month or year instead.

One way to do this would be to modify the source data, either by creating a new query in SQL or by

using LINQ. Both of these techniques will be described in later sections. Another way is simply to modify

the parameters of the “OrderDate” field. To do this, right-click the “OrderDate” field and select the

“Field Settings” menu. Then select the “Format” tab in the dialog, choose the “Custom” format, enter

“yyyy”, and click OK.

The dates are now formatted and summarized by year, and the OLAP chart looks like this:

If you wanted to check how sales are placed by month or weekday, you could simply change the format

to “MMMM” or “dddd”.

Drilling Down on the Data

As we mentioned before, each cell in the OLAP grid represents a summary of several records in the data

source. You can see the underlying records behind each cell in the OLAP grid by right clicking it with the

mouse.

To see this, click the “Olap Grid” tab and right-click the first cell on the grid, the one that represents

Andrew Fullers’s sales in 1996. You will see another grid showing the 40 records that were used to

compute the total displayed in the Olap grid:

Customizing the C1OlapPage
The previous example showed how you can create a complete OLAP application using only a

C1OlapPage control and no code at all. This is convenient, but in most cases you will want to customize

the application and the user interface to some degree.

Persisting OLAP views

We will start by adding a default view to the previous application. To do this, right-click the project node

in the solution explorer, click the “Properties” item, then select the “Settings” tab and create a new

setting of type string called “DefaultView”:

This setting will be used to persist the view across sessions, so any customizations made by the user are

automatically saved when he closes the application and restored next time he runs it.

To enable this behavior, open the “Form1” form, switch to code view, and add the following code to the

application:

private void Form1_Load(object sender, EventArgs e)

{

 // auto-generated:

 // This line of code loads data into the 'nWINDDataSet.Invoices' table.

 this.invoicesTableAdapter.Fill(this.nWINDDataSet.Invoices);

 // show default view: this assumes an application

 // setting of type string called "DefaultView"

 var view = Properties.Settings.Default.DefaultView;

 if (!string.IsNullOrEmpty(view))

 {

 c1OlapPage1.ViewDefinition = view;

 }

 else

 {

 // build default view now

 var olap = c1OlapPage1.OlapEngine;

 olap.BeginUpdate();

 olap.RowFields.Add("ProductName");

 olap.ColumnFields.Add("Country");

 olap.ValueFields.Add("ExtendedPrice");

 olap.EndUpdate();

 }

}

// closing form, save current view as default for next time

protected override void OnClosing(CancelEventArgs e)

{

 // save current view as new default

 Properties.Settings.Default.DefaultView = c1OlapPage1.ViewDefinition;

 Properties.Settings.Default.Save();

 // fire event as usual

 base.OnClosing(e);

}

asdasdasdas

The first line should already be there when you open the form. It was automatically generated to load

the data.

The next block of code checks whether the “DefaultView” setting is already available. If it is, then it is

assigned to the C1OlapPage.ViewDefinition property. This applies the entire view settings, including all

fields with their respective properties, as well as all charting, grid, and reporting options.

If the “DefaultView” setting is not available, then the code creates a view by adding fields to the

RowFields, ColumnFields, and ValueFields collections. The view created shows sales (sum of extended

price values) by product and by country.

The next block of code overrides the form’s OnClosing method and saves the current view by reading

the C1OlapPage.ViewDefinition property and assigning it to the “DefaultView” setting, which is then

saved.

If you run the project now, you will notice that it starts with the default view created by code. If you

make any changes to the view, close the application, and then re-start it, you will notice that your

changes are restored.

Creating Predefined Views

In addition to the ViewDefinition property, which gets or sets the current view as an XML string, the

C1OlapPage control also exposes ReadXml and WriteXml methods that allow you to persist views to

files and streams. These methods are automatically invoked by the C1OlapPage when you click the

“Load” and “Save” buttons in the built-in toolstrip.

These methods allow you to implement predefined views very easily. To do this, start by creating some

views and saving each one by pressing the “Save” button. For this sample, we will create five views

showing sales by:

1. Product and Country

2. Salesperson and Country

3. Salesperson and Year

4. Salesperson and Month

5. Salesperson and Weekday

Once you have crated and saved all the views, create a new XML file called “DefaultViews.xml” with a

single “OlapViews” node, then copy and paste all your default views into this document. Next, add an

“id” tag to each view and assign each one a unique name. This name will be shown in the user interface

(it is not required by C1Olap). Your XML file should look like this:

<OlapViews>

 <C1OlapPage id="Product vs Country">

 <!-- view definition omitted... -->

 <C1OlapPage id="SalesPerson vs Country">

 <!-- view definition omitted... -->

 <C1OlapPage id="SalesPerson vs Year">

 <!-- view definition omitted... -->

 <C1OlapPage id="SalesPerson vs Month">>

 <!-- view definition omitted... -->

 <C1OlapPage id="SalesPerson vs Weekday">

 <!-- view definition omitted... -->

</OlapViews>

Now add this file to the project as a resource. To do this, right-click the project node in the solution

explorer, select the “Properties” item, then the “Resources” tab, the “Add Resource”, then “Add Existing

File…” option. Select the XML file and click OK.

Now that the view definitions are ready, we need to exposed them in a menu so the user can select

them. To do this, copy the following code into the project:

private void Form1_Load(object sender, EventArgs e)

{

 // no changes here

 // …

 // build menu with predefined views:

 var doc = new System.Xml.XmlDocument();

 doc.LoadXml(Properties.Resources.OlapViews);

 var menuView = new ToolStripDropDownButton("&View");

 foreach (System.Xml.XmlNode nd in doc.SelectNodes("OlapViews/C1OlapPage"))

 {

 var tsi = menuView.DropDownItems.Add(nd.Attributes["id"].Value);

 tsi.Tag = nd;

 }

 menuView.DropDownItemClicked += menuView_DropDownItemClicked;

 c1OlapPage1.Updated += c1OlapPage1_Updated;

 // add new view menu to C1OlapPage toolstrip

 c1OlapPage1.ToolStrip.Items.Insert(3, menuView);

}

The code creates a new toolstrip drop-down button, then loads the XML document with the report

definitions and populates the drop-down button with the reports found. Each item contains the view

name in its Text property, and the actual XML node in its Tag property. The node will be used later to

apply the view when the user selects it.

Once the drop-down is ready, the code adds it to the C1OlapPage using the ToolStrip property. The new

button is added at position 3, after the first two buttons and the first separator.

The only part still missing is the code that will apply the views to the C1OlapPage when the user selects

them by clicking the button. This is accomplished with the following code:

// select a predefined view

void menuView_DropDownItemClicked(object sender, ToolStripItemClickedEventArgs e)

{

 var nd = e.ClickedItem.Tag as System.Xml.XmlNode;

 if (nd != null)

 {

 // load view definition from XML

 c1OlapPage1.ViewDefinition = nd.OuterXml;

 // show current view name in status bar

 c1OlapPage1.LabelStatus.Text = nd.Attributes["id"].Value;

 }

}

void c1OlapPage1_Updated(object sender, EventArgs e)

{

 // clear report name after user made any changes

 c1OlapPage1.LabelStatus.Text = string.Empty;

}

The code retrieves the report definition as an XML string by reading the node’s OuterXml property, then

assigns it to the C1OlapPage.ViewDefinition property. It also shows the name of the view in the

C1OlapPage status bar using the LabelStatus property.

Finally, the code handles the Updated event to clear the status bar whenever the user makes any

changes to the view. This indicates that the view no longer matches the predefined view that was

loaded from the application resources.

The C1OlapPage exposes most of the components it contains, which makes customization easy. You can

add, remove or change the elements from the ToolStrip, from the TabControl, and show status

messages using the LabelStatus property. You can also add other elements to the page in addition to the

C1OlapPage.

If you need further customization, you can also choose not to use the C1OlapPage at all, and build your

interface using the lower-level C1OlapPanel, C1OlapGrid, and C1OlapChart controls. The source code

for the C1OlapPage control is included with the package and can be used as a starting point. The

example in the “Building a custom User Interface” section shows how this is done.

Using LINQ as an OLAP data source
C1Olap can consume any collection as a data source. It is not restricted to DataTable objects. In

particular, it can be used with LINQ.

LINQ provides an easy to use, efficient, flexible model for querying data. It makes it easy for developers

to create sophisticated queries on client applications without requiring modifications to the databases

such as the creation of new stored procedures. These queries can in turn be used as data sources for

C1Olap so end users also have the ability to create their own views of the data.

To illustrate this, create a new project and add a C1OlapPage control to the form. Instead of setting the

DataSource property in the designer and using a stored procedure like we did before, this time we will

load the data using a LINQ query. To do this, add the following code to the form constructor:

public Form1()

{

 // designer

 InitializeComponent();

 // load all interesting tables into a DataSet

 var ds = new DataSet();

 foreach (string table in

 "Products,Categories,Employees," +

 "Customers,Orders,Order Details".Split(','))

 {

 string sql = string.Format("select * from [{0}]", table);

 var da = new OleDbDataAdapter(sql, GetConnectionString());

 da.Fill(ds, table);

 }

 // build LINQ query and use it as a data source

 // for the C1OlapPage control

 // …

}

// get standard nwind mdb connection string

static string GetConnectionString()

{

 string path =

 Environment.GetFolderPath(Environment.SpecialFolder.Personal) +

 @"\ComponentOne Samples\Common";

 string conn = @"provider=microsoft.jet.oledb.4.0;" +

 @"data source={0}\c1nwind.mdb;";

 return string.Format(conn, path);

}

The code loads several tables from the NorthWind. It assumes the NorthWind database is available in

the “ComponentOne Samples” folder, which is where the C1Olap setup places it. If you have the

database in a different location, you will have to adjust the GetConnectionString method as

appropriate.

Next, let’s add the actual LINQ query. This is a long but simple statement:

// build LINQ query

var q =

 from detail in ds.Tables["Order Details"].AsEnumerable()

 join product in ds.Tables["Products"].AsEnumerable()

 on detail.Field<int>("ProductID")

 equals product.Field<int>("ProductID")

 join category in ds.Tables["Categories"].AsEnumerable()

 on product.Field<int>("CategoryID")

 equals category.Field<int>("CategoryID")

 join order in ds.Tables["Orders"].AsEnumerable()

 on detail.Field<int>("OrderID")

 equals order.Field<int>("OrderID")

 join customer in ds.Tables["Customers"].AsEnumerable()

 on order.Field<string>("CustomerID")

 equals customer.Field<string>("CustomerID")

 join employee in ds.Tables["Employees"].AsEnumerable()

 on order.Field<int>("EmployeeID")

 equals employee.Field<int>("EmployeeID")

 select new

 {

 Sales = (detail.Field<short>("Quantity") *

 (double)detail.Field<decimal>("UnitPrice")) *

 (1 - (double)detail.Field<float>("Discount")),

 OrderDate = order.Field<DateTime>("OrderDate"),

 Product = product.Field<string>("ProductName"),

 Customer = customer.Field<string>("CompanyName"),

 Country = customer.Field<string>("Country"),

 Employee = employee.Field<string>("FirstName") + " " +

 employee.Field<string>("LastName"),

 Category = category.Field<string>("CategoryName")

 };

// use LINQ query as DataSource for the C1OlapPage control

c1OlapPage1.DataSource = q.ToList();

The LINQ query is divided into two parts. The first part uses several join statements to connect the

tables we loaded from the database. Each table is connected to the query by joining its primary key to a

field that is already available on the query. We start with the “Order Details” table, then join “Products”

using the “ProductID” field, then “Categories” using the “CategoryID” field, and so on.

Once all the tables are joined, a select new statement is used to build a new anonymous class containing

the fields we are interested in. Notice that the fields may map directly to fields in the tables, or they may

be calculated. The “Sales” field for example is calculated based on quantity, unit price, and discount.

Once the LINQ query is ready, it is converted to a list using LINQ’s ToList method, and the result is

assigned to the C1OlapPage.DataSource property. The ToList method is required because it causes the

query to be executed. If you simply assign the query to any control’s DataSource property, you will get a

syntax error.

If you run the project now, you will see that it looks and behaves just like before, when we used a stored

procedure as a data source. The advantage of using LINQ is that the query is built into the application.

You can change it easily without having to ask the database administrator for help.

Large data sources
All the examples discussed so far loaded all the data into memory. This is a simple and convenient way

to do things, and it works in many cases.

In some cases, however, there may be too much data to load into memory at once. Consider for

example a table with a million rows or more. Even if you could load all this data into memory, the

process would take a long time.

There are many ways to deal with these scenarios. You could create queries that summarize and cache

the data on the server, or use specialized OLAP data providers. In either case, you would end up with

tables that can be used with C1Olap.

But there are also simpler options. Suppose the database contains information about thousands of

companies, and users only want to see a few at a time. Instead of relying only on the filtering

capabilities of C1Olap, which happen on the client, you could delegate some of the work to the server,

and load only the companies the user wants to see. This is easy to accomplish and does not require any

special software or configurations on the server.

For example, consider the following CachedDataTable class (this class is used in the “SqlFilter” sample

installed with C1Olap):

/// <summary>

/// Extends the <see cref="DataTable"/> class to load and cache

/// data on demand using a <see cref="Fill"/> method that takes

/// a set of keys as a parameter.

/// </summary>

class CachedDataTable : DataTable

{

 public string ConnectionString { get; set; }

 public string SqlTemplate { get; set; }

 public string WhereClauseTemplate { get; set; }

 Dictionary<object, bool> _values =

 new Dictionary<object, bool>();

 // constructor

 public CachedDataTable(string sqlTemplate,

 string whereClauseTemplate, string connString)

 {

 ConnectionString = connString;

 SqlTemplate = sqlTemplate;

 WhereClauseTemplate = whereClauseTemplate;

 }

 // populate the table by adding any missing values

 public void Fill(IEnumerable filterValues, bool reset)

 {

 // reset table if requested

 if (reset)

 {

 _values.Clear();

 Rows.Clear();

 }

 // get a list with the new values

 List<object> newValues = GetNewValues(filterValues);

 if (newValues.Count > 0)

 {

 // get sql statement and data adapter

 var sql = GetSqlStatement(newValues);

 using (var da = new OleDbDataAdapter(sql, ConnectionString))

 {

 // add new values to the table

 int rows = da.Fill(this);

 }

 }

 }

 public void Fill(IEnumerable filterValues)

 {

 Fill(filterValues, false);

 }

This class extends the regular DataTable class and provides a Fill method that can either repopulate the

table completely or add additional records based on a list of values provided. For example, you could

start by filling the table with two customers (out of several thousand) and then add more only when the

user requested them.

Note that the code uses an OleDbDataAdapter. This is because the sample uses an MDB file as a data

source and an OleDb-style connection string. To use this class with Sql Server data sources, you would

replace the OleDbDataAdapter with a SqlDataAdapter.

The code above is missing the implementation of two simple methods given below:

 // gets a list with the filter values that are not already in the

 // current values collection;

 // and add them all to the current values collection.

 List<object> GetNewValues(IEnumerable filterValues)

 {

 var list = new List<object>();

 foreach (object value in filterValues)

 {

 if (!_values.ContainsKey(value))

 {

 list.Add(value);

 _values[value] = true;

 }

 }

 return list;

 }

 // gets a sql statement to add new values to the table

 string GetSqlStatement(List<object> newValues)

 {

 return string.Format(SqlTemplate, GetWhereClause(newValues));

 }

 string GetWhereClause(List<object> newValues)

 {

 if (newValues.Count == 0 || string.IsNullOrEmpty(WhereClauseTemplate))

 {

 return string.Empty;

 }

 // build list of values

 StringBuilder sb = new StringBuilder();

 foreach (object value in newValues)

 {

 if (sb.Length > 0) sb.Append(", ");

 if (value is string)

 {

 sb.AppendFormat("'{0}'", ((string)value).Replace("'", "''"));

 }

 else

 {

 sb.Append(value);

 }

 }

 // build where clause

 return string.Format(WhereClauseTemplate, sb);

 }

}

The GetNewValues method returns a list of values that were requested by the user but are still not

present in the DataTable. These are the values that need to be added.

The GetSqkStatement method builds a new SQL statement with a WHERE clause that loads the records

requested by the user that haven’t been loaded yet. It uses string templates provided by the caller in the

constructor, which makes the class general.

Now that the CachedDataTable is ready, the next step is to connect it with C1Olap and enable users to

analyze the data transparently, as if it were all loaded in memory.

To do this, open the main form, add a C1OlapPage control to it, then add the following code to the

form:

public partial class Form1 : Form

{

 List<string> _customerList;

 List<string> _activeCustomerList;

 const int MAX_CUSTOMERS = 12;

These fields will contain a complete list of all the customers in the database, a list of the customers

currently selected by the user, and the maximum number of customers that can be selected at any time.

Set the maximum number of customers to a relatively small value to prevent users from loading too

much data into the application at once.

Next, we need to get a complete list of all the customers in the database so the user can select the ones

he wants to look at. Note that this is a long list but compact list. It contains only the customer name, not

any of the associated details such as orders, order details, etc. Here is the code that loads the full

customer list:

public Form1()

{

 InitializeComponent();

 // get complete list of customers

 _customerList = new List<string>();

 var sql = @"SELECT DISTINCT Customers.CompanyName" +

 "AS [Customer] FROM Customers";

 var da = new OleDbDataAdapter(sql, GetConnectionString());

 var dt = new DataTable();

 da.Fill(dt);

 foreach (DataRow dr in dt.Rows)

 {

 _customerList.Add((string)dr["Customer"]);

 }

Next, we need a list that contains the customers that the customer wants to look at. We persist this list

as a property setting, so it is preserved across sessions. The setting is called “Customers” and is of type

“StringCollection”. You create this by right clicking the project node in the solution explorer, selecting

“Properties”, then the “Settings” tab as before:

And here is the code that loads the “active” customer list from the new setting:

 // get active customer list

 _activeCustomerList = new List<string>();

 foreach (string customer in Settings.Default.Customers)

 {

 _activeCustomerList.Add(customer);

 }

Now we are ready to create a CachedDataTable and assign it to the C1OlapPage.DataSource property:

 // get data into the CachedDataTable

 var dtSales = new CachedDataTable(

 Resources.SqlTemplate,

 Resources.WhereTemplate,

 GetConnectionString());

 dtSales.Fill(_activeCustomerList);

 // assign data to C1OlapPage control

 _c1OlapPage.DataSource = dtSales;

 // show default view

 var olap = _c1OlapPage.OlapEngine;

 olap.BeginUpdate();

 olap.RowFields.Add("Customer");

 olap.ColumnFields.Add("Category");

 olap.ValueFields.Add("Sales");

 olap.EndUpdate();

The CachedDataTable constructor uses three parameters:

 SqlTemplate

This is a standard SQL SELECT statement where the “WHERE” clause is replaced by a

placeholder. The statement is fairly long, and is defined as an application resource. To see the

actual content please refer to the “SqlFilter” sample.

 WhereTemplate

This is a standard SQL WHERE statement that contains a template that will be replaced with the

list of values to include in the query. It is also defined as an application resource which contains

this string: “WHERE Customers.CompanyName in ({0})”.

 ConnectionString

This parameter contains the connection string that is used to connect to the database. Our

sample uses the same GetConnectionString method introduced earlier, that returns a reference

to the NorthWind database installed with C1Olap.

Now that the data source is ready, we need to connect it to C1Olap to ensure that:

1. The user can see all the customers in the C1Olap filter (not just the ones that are currently

loaded) and

2. When the user modifies the filter, new data is loaded to show any new customers requested.

To accomplish item 1, we need to assign the complete list of customers to the C1OlapField.Values

property. This property contains a list of the values that are displayed in the filter. By default, C1Olap

populates this list with values found in the raw data. In this case, the raw data contains only a partial list,

so we need to provide the complete version instead.

To accomplish item 2, we need to listen to the C1OlapField.PropertyChanged event, which fires when

the user modifies any field properties including the filter. When this happens, we retrieve the list of

customers selected by the user and pass that list to the data source.

This is the code that accomplishes this:

 // custom filter: customers in the list, customers currently active

 var field = olap.Fields["Customer"];

 var filter = field.Filter;

 filter.Values = _customerList;

 filter.ShowValues = _activeCustomerList.ToArray();

 filter.PropertyChanged += filter_PropertyChanged;

And here is the event handler that updates the data source when the filter changes:

// re-query database when list of selected customers changes

void filter_PropertyChanged(object sender, PropertyChangedEventArgs e)

{

 // get reference to parent filter

 var filter = sender as C1.Olap.C1OlapFilter;

 // get list of values accepted by the filter

 _activeCustomerList.Clear();

 foreach (string customer in _customerList)

 {

 if (filter.Apply(customer))

 {

 _activeCustomerList.Add(customer);

 }

 }

 // skip if no values were selected

 if (_activeCustomerList.Count == 0)

 {

 MessageBox.Show(

 "No customers selected, change will not be applied.",

 "No Customers");

 return;

 }

 // trim list if necessary

 if (_activeCustomerList.Count > MAX_CUSTOMERS)

 {

 MessageBox.Show(

 "Too many customers selected, list will be trimmed.",

 "Too Many Customers");

 _activeCustomerList.RemoveRange(MAX_CUSTOMERS,

 _activeCustomerList.Count - MAX_CUSTOMERS);

 }

 // get new data

 var dt = _c1OlapPage.DataSource as CachedDataTable;

 dt.Fill(_activeCustomerList);

}

The code starts by retrieving the field’s Filter and then calling the filter’s Apply method to build a list of

customers selected by the user. After some bounds-checking, the list is passed to the CachedDataTable

which will retrieve any missing data. After the new data is loaded, the C1OlapPage is notified and

automatically refreshes the view.

Before running the application, there is one last item to consider. The field’s Filter property is only taken

into account by the C1OlapEngine if the field in “active” in the view. “Active” means the field is a

member of the RowFields, ColumnFields, ValueFields, or FilterFields collections. In this case, the

“Customers” field has a special filter and should always be active. To ensure this, we must handle the

engine’s Updating event and make sure the “Customers” field is always active.

Here is the code that ensures the “Customers” field is always active:

public Form1()

{

 InitializeComponent();

 // ** no changes here **

 // make sure Customer field is always in the view

 // (since it is always used at least as a filter)

 _c1OlapPage.Updating += _c1OlapPage_Updating;

}

// make sure Customer field is always in the view

// (since it is always used at least as a filter)

void _c1OlapPage_Updating(object sender, EventArgs e)

{

 var olap = _c1OlapPage.OlapEngine;

 var field = olap.Fields["Customer"];

 if (!field.IsActive)

 {

 olap.FilterFields.Add(field);

 }

}

If you run the application now, you will notice that only the customers included in the “Customers”

setting are included in the view:

This looks like the screens shown before. The difference is that this time the filtering is done on the

server. Data for most customers has not even been loaded into the application.

To see other customers, right-click the “Customer” field and select “Field Settings”, then edit the filter

by selecting specific customers or by defining a condition as shown below:

When you click OK, the application will detect the change and will request the additional data from the

CachingDataTable object. Once the new data has been loaded, C1Olap will detect the change and

update the OLAP table automatically:

Building a custom User Interface
The examples in previous sections all used the C1OlapPage control, which contains a complete UI and

requires little or no code. In this section, we will walk through the creation of an OLAP application that

does not use the C1OlapPage. Instead, it creates a complete custom UI using the C1OlapGrid,

C1OlapChart, and some standard .NET controls.

The complete source code for this application is included in the “CustomUI” sample installed with

C1Olap.

The image below shows the application in design view:

There is a panel docked to the top of the form showing the application title. There is a vertical toolstrip

control docked to the right of the form with three groups of buttons. The top group allows users to pick

one of three pre-defined views: sales by salesperson, by product, or by country. The next group allows

users to apply a filter to the data based on product price (expensive, moderate, or inexpensive). The last

button provides reporting.

The remaining area of the form if filled with a split container showing a C1OlapGrid on the left and a

C1OlapChart on the right. These are the controls that will display the view currently selected.

The form also contains a C1OlapPrintDocument component that will be used to generate the reports.

This component is not visible in the image above because it only appears in the tray area below the

form. The C1OlapPrintDocument is connected to the OLAP controls on the page by its OlapGrid and

OlapChart properties, which were set at design time.

Finally, there is a C1OlapPanel control on the form. Its Visible property is set to false, so users won’t

ever see it. This invisible control is used as a data source for the grid and the chart, and is responsible for

filtering and summarizing the data. Both the grid and the chart have their DataSource property set to

the C1OlapPanel.

Once all the controls are in place, let’s add the code that connects them all and makes the application

work.

First, let’s get the data and assign it to the C1OlapPanel:

private void Form1_Load(object sender, EventArgs e)

{

 // load data

 var da = new OleDbDataAdapter("select * from Invoices",

 GetConnectionString());

 var dt = new DataTable();

 da.Fill(dt);

 // assign it to C1OlapPanel that is driving the app

 this.c1OlapPanel1.DataSource = dt;

 // start with the SalesPerson view, all products

 _btnSalesperson.PerformClick();

 _btnAllPrices.PerformClick();

}

The code gets the data from the NorthWind database using a DataAdapter and assigns the resulting

DataTable to the C1OlapPanel.DataSource property. It then uses the PerformClick method to simulate

clicks on two buttons to initialize the current view and filter.

The event handlers for the buttons that select the current view look like this:

void _btnSalesperson_Click(object sender, EventArgs e)

{

 CheckButton(sender);

 BuildView("Salesperson");

}

void _btnProduct_Click(object sender, EventArgs e)

{

 CheckButton(sender);

 BuildView("ProductName");

}

void _btnCountry_Click(object sender, EventArgs e)

{

 CheckButton(sender);

 BuildView("Country");

}

All handlers use a BuildView helper method given below:

// rebuild the view after a button was clicked

void BuildView(string fieldName)

{

 // get olap engine

 var olap = c1OlapPanel1.OlapEngine;

 // stop updating until done

 olap.BeginUpdate();

 // format order dates to group by year

 var f = olap.Fields["OrderDate"];

 f.Format = "yyyy";

 // clear all fields

 olap.RowFields.Clear();

 olap.ColumnFields.Clear();

 olap.ValueFields.Clear();

 // build up view

 olap.ColumnFields.Add("OrderDate");

 olap.RowFields.Add(fieldName);

 olap.ValueFields.Add("ExtendedPrice");

 // restore upadtes

 olap.EndUpdate();

}

The BuildView method gets a reference to the C1OlapEngine object provided by the C1OlapPanel and

immediately calls the BeginUpdate method to stop updates until the new view has been completely

defined. This is done to improve performance.

The code then sets the format of the “OrderDate” field to “yyyy” so sales are grouped by year and

rebuilds view by clearing the engine’s RowFields, ColumnFields, and ValueFields collections, then

adding the fields that should be displayed. The “fieldName” parameter passed by the caller contains the

name of the only field that changes between views in this example.

When all this is done, the code calls EndUpdate so the C1OlapPanel will update the output table.

Before running the application, let’s look at the code that implements filtering. The event handlers look

like this:

void _btnExpensive_Click(object sender, EventArgs e)

{

 CheckButton(sender);

 SetPriceFilter("Expensive Products (price > $50)", 50, double.MaxValue);

}

void _btnModerate_Click(object sender, EventArgs e)

{

 CheckButton(sender);

 SetPriceFilter("Moderately Priced Products ($20 < price < $50)", 20, 50);

}

void _btnInexpensive_Click(object sender, EventArgs e)

{

 CheckButton(sender);

 SetPriceFilter("Inexpensive Products (price < $20)", 0, 20);

}

void _btnAllProducts_Click(object sender, EventArgs e)

{

 CheckButton(sender);

 SetPriceFilter("All Products", 0, double.MaxValue);

}

All handlers use a SetPriceFilter helper method given below:

// apply a filter to the product price

void SetPriceFilter(string footerText, double min, double max)

{

 // get olap engine

 var olap = c1OlapPanel1.OlapEngine;

 // stop updating until done

 olap.BeginUpdate();

 // make sure unit price field is active in the view

 var field = olap.Fields["UnitPrice"];

 olap.FilterFields.Add(field);

 // customize the filter to apply the condition

 var filter = field.Filter;

 filter.Clear();

 filter.Condition1.Operator =

 C1.Olap.ConditionOperator.GreaterThanOrEqualTo;

 filter.Condition1.Parameter = min;

 filter.Condition2.Operator =

 C1.Olap.ConditionOperator.LessThanOrEqualTo;

 filter.Condition2.Parameter = max;

 // restore upadtes

 olap.EndUpdate();

 // set report footer

 c1OlapPrintDocument1.FooterText = footerText;

}

As before, the code gets a reference to the C1OlapEngine and immediately calls BeginUpdate.

It then gets a reference to the “UnitPrice” field that will be used for filtering the data. The “UnitPrice”

field is added to the engine’s FilterFields collection so the filter will be applied to the current view.

This is an important detail. If a field is not included in any of the view collections (RowFields,

ColumnFields, ValueFields, FilterFields), then it is not included in the view at all, and its Filter property

does not affect the view in any way.

The code proceeds to configure the Filter property of the “UnitPrice” field by setting two conditions that

specify the range of values that should be included in the view. The range is defined by the “min” and

“max” parameters. Instead of using conditions, you could provide a list of values that should be

included. Conditions are usually more convenient when dealing with numeric values, and lists are better

for string values and enumerations.

Finally, the code calls EndUpdate and sets the FooterText property of the C1OlapPrintDocument so it

will be automatically displayed in any reports.

The methods above use another helper called CheckButton that is listed below:

// show which button was pressed

void CheckButton(object pressedButton)

{

 var btn = pressedButton as ToolStripButton;

 btn.Checked = true;

 var items = btn.Owner.Items;

 var index = items.IndexOf(btn);

 for (int i = index + 1; i < items.Count; i++)

 {

 if (!(items[i] is ToolStripButton)) break;

 ((ToolStripButton)items[i]).Checked = false;

 }

 for (int i = index - 1; i > 0 && !(items[i] is ToolStripSeparator); i--)

 {

 if (!(items[i] is ToolStripButton)) break;

 ((ToolStripButton)items[i]).Checked = false;

 }

}

This method makes the buttons in the toolstrip behave like radio buttons. When one of them is pushed,

all others in the same group are released.

The application is almost ready. You can run it now and test the different views and filtering capabilities

of the application, as illustrated below:

View showing sales for all products, grouped by year and country. Notice how the chart shows values

approaching $300,000.

If you click the “$$$ Expensive” button, the filter is applied and the view changes immediately. Notice

how now the chart shows values approaching $80,000 instead. Expensive values are responsible for

about one third of the sales:

The last piece missing from the application is reporting. Users can already copy data from the OlapGrid,

paste it into Excel, and print or save the results. But we can make it even easier, by allowing them to

print or create PDF files directly from within the application.

To do this, let us add some code to handle clicks in the “Report…” button. The code is very simple:

void _btnReport_Click(object sender, EventArgs e)

{

 using (var dlg = new C1.Win.Olap.C1OlapPrintPreviewDialog())

 {

 dlg.Document = c1OlapPrintDocument1;

 dlg.StartPosition = FormStartPosition.Manual;

 dlg.Bounds = this.Bounds;

 dlg.ShowDialog(this);

 }

}

If you have done any printing in .NET, the code should look familiar. It starts by instantiating a

C1OlapPrintPreviewDialog. This is a class similar to the standard PrintPreviewDialog, but with a few

enhancements that include export to PDF capability.

The code then sets the dialog’s Document property, initializes its position, and shows the dialog. If you

run the application now and click the “Report…” button, you should see a dialog like the one below:

From this dialog, users can modify the page layout, print or export the document to PDF.

Configuring Fields in Code
One of the main strengths in Olap applications is interactivity. Users must be able to create and modify

views easily and quickly see the results. C1Olap enables this with its Excel-like user interface and user

friendly, simple dialogs.

But in some cases you may want to configure views using code. C1Olap enables this with its simple yet

powerful object model, especially the Field and Filter classes.

The example that follows shows how you can create and configure views with C1Olap.

Start by creating a new WinForms application adding a C1OlapPage control to the form.

Switch to code view and add the following code to load some data and assign it to the C1OlapPage

control:

public Form1()

{

 InitializeComponent();

 // get data

 var da = new OleDbDataAdapter("select * from invoices",

 GetConnectionString());

 var dt = new DataTable();

 da.Fill(dt);

 // bind to olap page

 this.c1OlapPage1.DataSource = dt;

 // build initial view

 var olap = this.c1OlapPage1.OlapEngine;

 olap.ValueFields.Add("ExtendedPrice");

 olap.RowFields.Add("ProductName", "OrderDate");

}

static string GetConnectionString()

{

 string path = Environment.GetFolderPath(

 Environment.SpecialFolder.Personal) +

 @"\ComponentOne Samples\Common";

 string conn = @"provider=microsoft.jet.oledb.4.0;data source={0}\c1nwind.mdb;";

 return string.Format(conn, path);

}

The code loads the “Invoices” view from the NorthWind database (installed with C1Olap), binds the data

to the C1OlapPage control, and builds an initial view that shows the sum of the “ExtendedPrice” values

by product and by order date. This is similar to the examples given above.

If you run the sample now, you will see an Olap view including all the products and dates.

Next, let’s use the C1Olap object model to change the format used to display the order dates and

extended prices:

public Form1()

{

 InitializeComponent();

 // get data

 // no change…

 // bind to olap page

 // no change…

 // build initial view

 // no change…

 // format order date

 var field = olap.Fields["OrderDate"];

 field.Format = "yyyy";

 // format extended price and change the Subtotal type

 // to show the average extended price (instead of sum)

 field = olap.Fields["ExtendedPrice"];

 field.Format = "c";

 field.Subtotal = C1.Olap.Subtotal.Average;

}

The code retrieves the individual fields from the Fields collection which contains all the fields specified

in the data source. Then it assigns the desired values to the Format and Subtotal properties. Format

takes a regular .NET format string, and Subtotal determines how values are aggregated for display in the

Olap view. By default, values are added, but many other aggregate statistics are available including

average, maximum, minimum, standard deviation, and variance.

Now suppose you are interested only in a subset of the data, say a few products and one year. A user

would right-click the fields and apply filters to them. You can do the exact same thing in code as shown

below:

public Form1()

{

 InitializeComponent();

 // get data

 // no changes…

 // bind to olap page

 // no changes…

 // build view

 // no changes…

 // format order date and extended price

 // no changes…

 // apply value filter to show only a few products

 C1.Olap.C1OlapFilter filter = olap.Fields["ProductName"].Filter;

 filter.Clear();

 filter.ShowValues = "Chai,Chang,Geitost,Ikura".Split(',');

 // apply condition filter to show only some dates

 filter = olap.Fields["OrderDate"].Filter;

 filter.Clear();

 filter.Condition1.Operator =

 C1.Olap.ConditionOperator.GreaterThanOrEqualTo;

 filter.Condition1.Parameter = new DateTime(1996, 1, 1);

 filter.Condition2.Operator =

 C1.Olap.ConditionOperator.LessThanOrEqualTo;

 filter.Condition2.Parameter = new DateTime(1996, 12, 31);

 filter.AndConditions = true;

}

The code starts by retrieving the C1OlapFilter object that is associated with the “ProductName” field.

Then it clears the filter and sets its ShowValues property. This property takes an array of values that

should be shown by the filter. In C1Olap we call this a “value filter”.

Next, the code retrieves the filter associated with the “OrderDate” field. This time, we want to show

values for a specific year. But we don’t want to enumerate all days in the target year. Instead, we use a

“condition filter” which is defined by two conditions.

The first condition specifies that the “OrderDate” should be greater than or equal to January 1st, 1996.

The second condition specifies that the “OrderDate” should be less than or equal to December 31st,

1996. The AndConditions property specifies how the first and second conditions should be applied (AND

or OR operators). In this case, we want dates where both conditions are true, so AndConditions is set to

true.

If you run the project again, you should see the following:

