Document Solutions for Imaging 1

Table of Contents

Document Solutions for Imaging Overview 3
Key Features 4
Getting Started 5-7
Quick Start 8-10
License Information 11
Technical Support 12
Contacting Sales 13
Redistribution 14
End-User License Agreement 15
Product Architecture 16-21
Features 22
Create Image 23-29
Load Image 30-32
Save Image 33
Work with GIF files 34-36
Work with TIFF Images 37-39
Work with ICO files 40-41
Work with SVG Files 42-46
Work with WebP Files 47
Process Image 48-59
Apply Effects 60-63
Layouts 64-81
Complex Graphic Layouts 82-93
Tables 94-119
Work with Image Colors 120-122
Transparency Mask 123-129
Work with Graphics 130
Draw and Fill Shapes 131-135

Clip Region 136-137
Align Image 138-139
Apply Matrix Transformation 140-141
Add Transparency Layer 142-143
Interpolation Mode 144-147

Add Shadow 148-152

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 2

Add Glow and Soft Edges 153-155
Work with Text 156-170
Draw Rotated Text 171-180
Work with Exif Metadata 181-182
Render HTML to Image 183-187
Render Using Skia Library 188-189
Document Solutions Image Viewer 190
Samples 191
API Reference 192
Release Notes 193
Breaking Changes 194
Version 7.1.0 195
Version 7.0.0 196
Version 6.2.0 197
Version 6.1.0 198-199
Version 6.0.0 200
Version 5.2.0.800 201
Version 5.1.0.790 202
Version 5.0.0.762 203
Version 4.2.0.715 204
Version 4.1.0.658 205
Version 4.0.0.616 206
Version 3.1.0.508 207
Version 3. 0. 0. 414 208
Version 2.2.0.310 209-210

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 3

Document Solutions for Imaging Overview

Document Solutions is a cross-platform solution for document management which provides a universal document,
editor and viewer solution for all popular document formats.

Document Solutions for Imaging (Dslmaging, previously Gclmaging), is a part of Document Solutions product
line, that offers imaging API for image processing without using any external image editor. The library can create,
load, modify, and save images programmatically. The library supports Windows, macOS, and Linux and can also be
deployed as FaaS with AWS Lambda, Azure Functions, etc. The library offers a feature-rich API that can be used to
create and load popular image formats, such as JPEG, PNG, BMP, GIF, TIFF, ICO, SVG, WebP and apply advanced
image processing techniques and save them. In addition to reading and writing images, the library also allows
developers to rotate, crop, resize, convert images, draw and fill graphics on images, draw text on images, apply
dithering and thresholding effects on grayscale images, apply effects on RGB images, apply advanced TIFF features
and much more.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

Key Features

Dslmaging provides different features that enable the developers to build intuitive and professional-looking
applications. The main features for DsImaging Library are as follows:

Fast and efficient library
Dslmaging saves memory and time with its lightweight APl architecture. It allows you to apply advanced
imaging effects in less time for yielding high-performance results.

Create, load, modify, convert and save images programmatically

Using Dslmaging, you can programmatically create images in .NET Standard applications, with full support on
Windows, macOS and Linux, without the help of an external image processor. You can also load, modify,
convert the popular image formats, such as JPEG, PNG, BMP, GIF, and TIFF, and save them again.

Process images with advanced imaging effects
Dslmaging lets you rotate, flip, crop, resize, composite, blend, apply dithering, thresholding and RGB effects on
images.

Process GIF files
Dslmaging allows you to read individual frames from a GIF file and save them as images in different formats
supported by DsImaging. It also supports the creation of a GIF file by using multiple frames.

Create thumbnails
Dslmaging allows you to downscale the images and apply various interpolation algorithms for creating image
thumbnails.

Draw and fill graphics
Using Dslmaging, you can draw and fill graphics like lines, polygons, rectangles, rounded rectangles, ellipses,
paths on the graphics.

Advanced processing of image colors
Dslmaging allows you to adjust color intensity and histogram levels of an image. Additionally, it lets you
perform advanced imaging operations with color channels and color quantization.

Draw text on images
Dslmaging lets you draw text with advanced font and allows paragraph formatting on images. It also supports
RTL text and Kashida on Arabic text, and bitmap glyphs in OpenType CJK fonts.

Advanced TIFF processing
Dslmaging supports reading and writing TIFF frames, apply TIFF compression and color spaces, tiled images
and other advanced processing on TIFF images.

Work with EXIF (Exchangeable Image File Format) Metadata

Dslmaging allows you to extract the EXIF metadata, such as the shutter speed, flash use, focal length, light
value, location, title, creator, date, description, copyright etc. from the JPEG, PNG, TIFF images and save EXIF
profile to the same image formats.

Seamless HTML to Image rendering
Dslmaging library along with DsHtml library, allows you to render HTML text or files to images.

For additional information about the supported features in DsImaging, see Features topic.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 5

Getting Started

System Requirements

The Dslmaging packages are fully supported on Visual Studio 2017 or later for Windows, Visual Studio for MAC, and Visual
Studio Code for Linux and are compatible with the following:

.NET 5, .NET 6, and .NET 7

.NET Core 2.x and 3.x

.NET Standard 2.x

.NET Framework 4.6.1 or higher

Setting up an Application

Dslmaging references are available through NuGet, a Visual Studio extension that adds the required libraries and references
to your project automatically. To work with DsImaging, you need to have following references in your application:

Reference Purpose

DS.Documents.Imaging To use DsImaging in an application, you need to reference (install) just the
DS.Documents.Imaging package. It will pull in the required infrastructure packages.

DS.Documents.Imaging.Windows DS.Documents.Imaging.Windows provides support for font linking specified in the
Windows registry, and access to native Windows imaging APIs, improving performance
and adding some features (e.g. reading TIFF-JPEG frames).

DS.Documents.DX.Windows DS.Documents.DX.Windows is an infrastructure package used by
DS.Documents.Imaging.Windows. You do not need to reference it directly.

DS.Documents.Imaging.Skia Skia represents a rendering engine based on SkiaSharp and is used for drawing text and
graphics. You can optionally install this package for rendering quality graphics across
various platforms. For more information, see Render using Skia Library.

["g Note: With v7.0, GrapeCity.Documents.Imaging (Gclmaging) package is renamed to DS.Documents.Imaging
(Dslmaging). The namespaces and classes within DS.Documents.Imaging remain the same, which provide the same
functionality and are backwards compatible with GrapeCity.Documents.Imaging, ensuring minimal impact on your
existing projects.

To upgrade Gclmaging package to DsImaging package in your existing projects, follow one of the below options:

e Update package using Migration tool:
1. The migration tool is present in the package downloaded from the website. Follow the instructions on the
tool for a seamless migration from Gclmaging to Dsimaging.
e Update package manually from NuGet package manager:
1. In Solution Explorer, right-click either Dependencies or a project and select Manage NuGet Packages.
2. In Installed tab, click on GrapeCity.Documents.Imaging package and click Uninstall to remove it and its
dependencies from the project.
3. In Browse tab, type "ds.documents” or "DS.Documents” in the search text box at the top and find the
package "DS.Documents.Imaging"”.
4. Click Install to add the DS.Documents.Imaging package and its dependencies into the project.

Add reference to Dslmaging in your application from NuGet.org

In order to use DsImaging in a .NET Core, ASP.NET Core, .NET Framework application (any target that supports .NET Standard
2.0), install the NuGet packages in your application using the following steps:

Visual Studio for Windows

© 2024 MESCIUS inc. All rights reserved.

https://github.com/dotnet/core/blob/main/release-notes/6.0/supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/7.0/supported-os.md
https://www.nuget.org/packages/DS.Documents.Imaging
https://www.nuget.org/packages/DS.Documents.Imaging.Windows
https://www.nuget.org/packages/DS.Documents.DX.Windows
https://www.nuget.org/packages/DS.Documents.Imaging.Skia

Document Solutions for Imaging 6

Open Visual Studio.

Create any application (any target that supports .NET Standard 2.0).

Right-click the project in Solution Explorer and choose Manage NuGet Packages.
In the Package source on top right, select nuget.org.

Click Browse tab on top left and search for "DS.Documents".

On the left panel, select DS.Documents.Imaging

On the right panel, click Install.

Nouvhkwn=

Browse Installed Updates NuGet Package Manager: ConsoleApp1

e

DS.Documents. Package source: nuget.org - fist)

¥ | Include prerelease

DS.Documents.l magi ng
DS.Documents.Imaging by MESCIUS inc,, 7.51K dov
Documents Solutions for Imaging (Dslmaging) is a cross-

platform library for working with raster and vector (SVG] i... Version: Latest stable 7.0.3

@ Package source mapping is off.
DS.Documents. Pdf by MESCIUS inc., 6.26K downlaad
Document Solu)i

T
library that all ~ | Options

DS.Documents.DX. Wlndnws by
This is a platform-specific i
D5.Documents.Imaging. Wine

DS.Documents.Imaging.Windows by MESCIUS in
platform-specific library a ther
ments packages to work 1 m APls on Win...

Description

Document

t rr1ana;:m:nt and
w drawing high-quality text and

otate, and crop images, apply 1

image formats.

. In the Preview Changes dialog, click OK and choose | Accept in the next screen.

This adds all the required references of the package to your application. After this step, follow the steps in the Quick
Start section.

Visual Studio for Mac

Open Visual Studio for Mac.

Create any application (any target that supports .NET Standard 2.0).

In tree view on the left, right-click Dependencies and choose Add Packages.

In the Search panel, type "DS.Documents”.

From the list of packages displayed in the left panel, select DS.Documents.Imaging and click Add Packages.
Click Accept.

SOV hAWwWN =

This automatically adds references of the package and its dependencies to your application. After this step, follow the steps
in the Quick Start section.

Visual Studio Code for Linux

Open Visual Studio Code.

Install Nuget Package Manager from Extensions.

Create a folder "MyApp" in your Home folder.

In the Terminal in Visual Studio Code, type "cd MyApp"

Type command "dotnet new console"

Observe: This creates a .NETCore application with MyApp.csproj file and Program.cs.
Press Ctrl+P. A command line opens at the top.

7. Type command: ">"

Observe: "Nuget Package Manager: Add Package" option appears.

vihwn =

o

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

8. Click the above option.
9. Type "DS" and press Enter.
Observe: DS packages get displayed in the dropdown.

10. Choose DS.Documents.Imaging.
11. Type following command in the Terminal window: "dotnet restore"

This adds references of the package to your application. After this step, follow the steps in the Quick Start section.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 8

Quick Start

The following quick start sections help you in getting started with the DsImaging library:

® Create and Save an Image
® Load and Modify an Image

Create and Save an Image

This quick start covers how to create an image and draw string on it in a specified font using a .NET Core or .NET
Standard application. Follow the steps below to get started:

1. Create an instance of GcBitmap class
2. Draw and fill a rectangle
3. Save the image

Hello World!

Step 1: Create an instance of GcBitmap class

1. Create a new application (NET Core Console App\Windows Forms App) and add the references.
2. Include the following namespaces

o using GrapeCity.Documents.Imaging;
3. Create a new image using an instance of GeBitmap class, through code.

C#

//Create GcBitmap

var bmp = new GcBitmap (1024, 1024, true, 96, 96);
//Create a graphics for drawing

GcBitmapGraphics g = bmp.CreateGraphics () ;

Back to Top
Step 2: Draw and fill a rectangle

Add the following code to draw a rectangle using the RectangleF class, and then add text to it using the DrawString
method of GeBitmapGraphics class.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

C#

//Add a radial gradient
RadialGradientBrush r= new RadialGradientBrush (Color.Beige,
Color.RosyBrown, new PointF(0.5f, 0.5f), true);

//Draw a rectangle
var rc = new RectangleF (0, 0, bmp.Width, bmp.Height) ;

//Fill the rectangle using specified brush
g.FillRectangle (rc, r);

// Create a text format for the "Hello World!" string:
TextFormat tf = new TextFormat () ;

//Pick a font size, color and style
tf.FontSize = 80;

tf.FontStyle = FontStyle.BoldItalic;
tf.ForeColor = Color.Chocolate;

//Draw the string (text)
g.DrawString ("Hello World!", tf, rc, TextAlignment.Center,
ParagraphAlignment.Center, false);

Back to Top
Step 3: Save the image

Save the image using SaveAsJpeg method of the GeBitmap class.

C#

//Save bitmap as JPEG image
bmp.SaveAsJpeg ("HelloWorld.jpg") ;

Back to Top

Load and Modify an Image

This quick start covers how to load an existing image, modify and save it using a .NET Core or .NET Standard
application. Follow the steps below to get started:

1. Load an existing image
2. Modify the image
3. Save the image

Step 1: Load an existing image

1. Create a new application (NET Core Console App\Windows Forms App) and add the references.
2. Include the following namespace

o using GrapeCity.Documents.Imaging;
3. Load an existing image using Load method of the GeBitmap class.

C#

//Create GcBitmap

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

var bmp = new GcBitmap () ;

var fs = new FileStream(Path.Combine ("puffins-small.jpg"),

FileAccess.ReadWrite) ;
//Load image
bmp.Load (fs) ;

Back to Top

Step 2: Modify the image

FileMode.Open,

10

1. Add the following code that to add a text using the DrawString method of GeBitmapGraphics class to draw

string.
C#

//Create a graphics for drawing
GcBitmapGraphics g = bmp.CreateGraphics();

// Create a text format for the string:
TextFormat tf = new TextFormat();

// Pick a font size, color and style
tf.FontSize = 10;

tf.ForeColor = Color.Red;
tf.FontStyle FontStyle.BoldItalic;

//Draw the string (text)
g.DrawString ("Penguins", tf, new PointF (10,

Back to Top
Step 3: Save the image
Save the image using SaveAsJpeg method of the GeBitmap class.

C#

//Save bitmap
bmp.SaveAsJpeg ("NewImage.jpg") ;

Back to Top

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 11

License Information

Document Solutions for Imaging supports the following types of license:

® Unlicensed
e Evaluation License
e Licensed

Unlicensed
After downloading the product, the product works in the unlicensed mode. However, not more than 10 instances of

GcBitmapGraphics and GecWicBitmapGraphics (combined) can be created when the product is used without license.

If you have already created 10 instances of GeBitmapGraphics (BitmapRenderer) and GcWicBitmapGraphics
(RenderTarget), following exception is thrown on creating the next instance:

‘Unlicensed copy of Document Solutions for Imaging. The number of GcBitmapGraphics (BitmapRenderer) and
GcWicBitmapGraphics (RenderTarget) instances is limited to 10. Contact us.sales@mescius.com to get your 30-day
evaluation key.'

Evaluation License
Dslmaging evaluation license is available to users for 30 days to evaluate the product. If you want to evaluate the

product, you can ask for evaluation license key by sending an email to us.sales@mescius.com.

The evaluation version has an expiration date that is determined when an evaluation key is generated. After applying
the evaluation license key, you can use the complete product until the license expiry date.

After the expiry date, following exception is thrown:
'This evaluation copy of Document Solutions for Imaging has expired. Contact us.sales@mescius.com to purchase your
license. To continue using Dslmaging with limitations, remove the expired evaluation license key.'

Licensed

Dslmaging production license is issued at the time of purchase of the product. If you have a production license,
you can access all the features of DsImaging without any limitations.

Apply License

To apply evaluation/production license in DsImaging, the long string key needs to be copied to the code in one of the
following two ways.

® Pass it as an argument to the GeBitmap's ctor:
var bmp = new GcBitmap () ;
bmp.ApplyLicenseKey ("Key") ;
This licenses the instance being created.

e (all a static method on GcBitmap:
GcBitmap.SetLicenseKey ("key") ;
This licenses all the instances while the program is running.

GcWicBitmap and GeSvgGraphics are licensed just like GeBitmap, using the same keys and instance counts. Also,
please note that if a GeBitmap is converted to GcWicBitmap or vice versa, the converted object also gets licensed if
the original was.

© 2024 MESCIUS inc. All rights reserved.

mailto:us.sales@grapecity.com
mailto:us.sales@mescius.com
mailto:us.sales@mescius.com
mailto:us.sales@grapecity.com
mailto:us.sales@mescius.com

Document Solutions for Imaging

Technical Support

If you have a technical question about this product, consult the following sources:

® Product forum: https://developer.mescius.com/forums
® Email: us.sales@mescius.com

© 2024 MESCIUS inc. All rights reserved.

12

https://developer.mescius.com/forums
mailto:us.sales@mescius.com

Document Solutions for Imaging 13

Contacting Sales

If you would like to find out more about our products, contact our Sales department using one of these methods:

World Wide Web site https://developer.mescius.com/

E-mail us.sales@mescius.com

Phone (800) 858-2739 or (412) 681-4343 outside the US.A.
Fax (412) 681-4384

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/
mailto:us.sales@mescius.com

Document Solutions for Imaging 14

Redistribution

To distribute an application containing the DsImaging API, it is necessary to have a valid Distribution License and meet
all System Requirements.

| & Dslmaging makes it easy to deploy your application to your local servers or cloud offerings such as Azure.

For more information about Distribution License, contact our Sales department using one of these methods:

World Wide Web site https://developer.mescius.com/
E-mail us.sales@mescius.com

Phone 1.800.858.2739 or 412.681.4343
Fax (412) 681-4384

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/forums
mailto:us.sales@mescius.com

Document Solutions for Imaging 15

End-User License Agreement

The MESCIUS licensing information, including the MESCIUS end-user license agreement, frequently asked licensing
guestions, and the MESCIUS licensing model, is available online. For detailed information on licensing, see MESCIUS
Licensing. For MESCIUS end-user license agreement, see End-User License Agreement For MESCIUS Software.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/licensing/grapecity/
https://developer.mescius.com/licensing/grapecity/
https://developer.mescius.com/legal/eula

Document Solutions for Imaging 16

Product Architecture

Packaging

Dslmaging is a collection of cross-platform .NET class libraries written in C#, providing an API that allows to create
image from scratch and to load, analyze and modify existing images.

Dslmaging is compatible with .NET Core 2.x/3.x, .NET Standard 2.x, .NET Framework 4.6.1 or higher, and .NET 6 or
higher.

Dslmaging and supporting packages are available on nuget.org:

DS.Documents.Imaging
DS.Documents.Imaging.Windows
DS.Documents.Imaging.Skia
DS.Documents.DX.Windows

To use Dslmaging in an application, you need to reference just the DS.Documents.Imaging package. It pulls in the
required infrastructure packages.

On a Windows system, you can optionally install DS.Documents.Imaging.Windows. It contains GcWicBitmap class
that works efficiently with various image formats and allows drawing text and graphics using DirectWrite/Direct2D-
based functionality. Also, it provides support for font linking specified in the Windows registry. This library can be
referenced on a non-Windows system, but does nothing.

Dslmaging API Overview

Namespaces
Namespaces Description
GrapeCity.Documents.Drawing Framework for drawing on the abstract GeGraphics surface.
GrapeCity.Documents.Imaging Types used to create, process and modify images. Nested namespaces
contain types supporting specific image spec areas:
e GrapeCity.Documents.Drawing
® GrapeCity.Documents.Imaging
GrapeCity.Documents.Text Text processing sub-system.

Grapecity.Documents.Imaging.Skia Types used for drawing text and graphics using a highly optimized library
SKIA.

Dslmaging provides classes for three main purposes.

e (Creating new images or loading images from various formats including multi-frame GIFs and TIFFs

® Drawing graphics and text on the in-memory bitmaps, applying various effects and transformation to the
bitmaps

® Saving the resulting images as JPEG, PNG, BMP, multipage TIFF, multi-frame GIF or WebP.

Dslmaging classes can be used efficiently in a multi-threaded environment. They don't depend on system handles or
Ul threads.

Image Containers

© 2024 MESCIUS inc. All rights reserved.

https://www.nuget.org/packages?q=grapecity.documents

Document Solutions for Imaging 17

There are several containers in the DsImaging package (DS.Documents.Imaging) and in the related Windows specific
package (DS.Documents.Imaging.Windows).

e GcBitmap is a platform-independent storage for raster images. You can access individual pixels as 32-bit
unsigned integer values in the ARGB format where alpha component is the most significant byte. The Alpha
channel is either pre-multiplied to Red, Green, Blue color channels or it is not pre-multiplied at all. GeBitmap
can be encoded and saved to BMP, PNG, JPEG, GIF, TIFF, WebP or decoded and loaded from the same set of
image formats.

e GrapeCity.Documents.Imaging.Windows.GcWicBitmap which resides in the
DS.Documents.Imaging.Windows package, is very similar to GeBitmap but uses the Windows Imaging
Component (WIC) subsystem for storing a raster image. GcWicBitmap supports various pixel formats and
conversion between the formats. Usually, it works with 32-bit ARGB pixels and pre-multiplied Alpha channel. It
is easy to copy such an image between GcWicBitmap and GeBitmap classes. GcWicBitmap can be saved to
BMP, PNG, JPEG, GIF, TIFF, WebP, JPEGXR and loaded from BMP, PNG, JPEG, GIF, TIFF, WebP, JPEGXR, ICO
image formats. It works faster than GcBitmap but is available only on the Windows platform and lacks some of
the functionalities of GcBitmap such as direct pixel access.

e GrayscaleBitmap is a platform-independent storage for a grayscale image with 8 bits per pixel or an 8-bit
transparency mask. It is four times more compact than GcBitmap. A full-color GeBitmap can be transformed to
grayscale using GrayscaleEffect, and can easily be converted to GrayscaleBitmap. It is possible to save a
GrayscaleBitmap to TIFF and load it from a TIFF file. Working with other image formats requires conversion to
GcBitmap. GrayscaleBitmap is handy to use as a transparency mask to be applied to GeBitmap.

e BilevelBitmap is a compact storage for a bi-level transparency mask or an image containing two colors, such
as black and white. To convert a full-color GcBitmap to BilevelBitmap, you need to apply the GrayscaleEffect,
then apply one of the dithering or thresholding effects to make the image bi-level. The result can be stored as
a BilevelBitmap. It supports saving to TIFF and loading from TIFF. You can read or modify individual pixels in
BilevelBitmap and apply it to GcBitmap as a transparency mask.

® Indexed4bppBitmap and Indexed8bppBitmap are palette-based containers with 4-bit or 8-bit pixels
containing indices of corresponding palette entries. These images can be saved to TIFF and loaded from TIFF.
Indexed8bppBitmap can also be loaded from GIF and both Indexed4bppBitmap and Indexed8bppBitmap can
be saved to GIF. It is easy to convert full-color GeBitmap to an indexed bitmap using one of the dithering
algorithms. The palette entries and pixels are accessible for modifications.

® Image is a lightweight class representing the image in a file, stream, or array of bytes. You can draw the Image
on GcGraphics, convert it to GeBitmap, or save to a MemoryStream in the original format.

Graphics

GrapeCity.Documents.Drawing.GcGraphics is an abstract base class for implementing graphics functionality for
different targets. It allows to draw graphics primitives and text on various media, including GeBitmap, GcWicBitmap,
and GcPdfDocument. The GeGraphics class offers roughly the same functionality as System.Drawing.Graphics class
in WinForms but is platform-independent and provides implementations for different targets.

The GeBitmapGraphics class is derived from GcGraphics and allows to draw on a GeBitmap. Use
GcBitmap.CreateGraphics() method to create an instance of GeBitmapGraphics. Likewise,
GcWicBitmap.CreateGraphics() method creates an instance of GcWicBitmapGraphics that can be used to draw on a
GcWicBitmap. Please note that you need to dispose the graphics objects after use.

Classes like GeBitmapGraphics and GcWicBitmapGraphics obey the universal object model for drawing with
GcGraphics. Internally, both classes are based on more specific implementations targeting the actual media, such as
GcBitmap or GcWicBitmap.

Renderer Classes
The target-specific renderer classes like BitmapRenderer for GecBitmap and

GrapeCity.Documents.DX.Direct2D.RenderTarget for GcWicBitmap provide access to various fine-tuning settings and
to methods not supported by the universal GcGraphics abstract class.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 18

For example, you must work with BitmapRenderer to update anti aliasing setting or to enable multi threading during
the rendering phase. An instance of BitmapRenderer is available through the GeBitmap.Renderer and
GcBitmapGraphics.Renderer properties. An important feature provided by BitmapRenderer is the capability to work
with lightweight objects called regions, that can be created from simple figures and graphics paths. Regions can be
combined using various logical operations, then filled with brushes or used for clipping.

TIFF Reader/Writer

DsImaging has special support for multi page TIFF format. GeTiffReader allows to read individual images from a multi
page TIFF file or stream. After the proper initialization, the user can access GcTiffReader.Frames property, which is a
list of TiffFrame class instances. TiffFrame is a lightweight reference to the actual image data. It allows to read the
frame image into one of the container classes, such as BilevelBitmap or GeBitmap. GcTiffReader works on any
platform but has some limitations. For example, it does not currently support TIFF-JPEG compression scheme.

The GcWicTiffReader from GrapeCity.Documents.Imaging.Windows namespace in
DS.Documents.Imaging.Windows package is a platform-dependent counterpart for GcTiffReader. It is based on the
Windows Imaging Component subsystem and supports a few color spaces and compression schemes which are
currently not available with platform-independent GcTiffReader. The Frames collection in GeWicTiffReader contains
instances of the WicTiffFrame class. It allows to read frame images into the GcWicBitmap image container.

GcTiffWriter is a platform-independent class making it possible to create a multi page TIFF file or stream from a set
of individual images. You can append images, such as GrayscaleBitmap, Indexed8bppBitmap and so on, to a
GcTiffWriter and specify the detailed settings controlling the frame storage format and metadata using

the TiffFrameSettings class. GcTiffWriter fully supports the Baseline TIFF specification and several TIFF extensions,
such as tiled images, the Deflate compression scheme, associated and unassociated Alpha and other features.
GcWicTiffWriter is a Windows-specific WIC-based class that allows to write GcWicBitmaps to TIFF as separate frames.
It does not offer much functionality beyond GcTiffWriter, but may be handy when drawing images to GcWicBitmap
and saving them as a bunch.

GIF Reader/Writer

Dslmaging has special support for multi-frame GIF format. GeGifReader allows to read individual frames. After the
proper initialization, the user can access GcGifReader.Frames property, which is a list of GifFrame class instances.
GifFrame is a lightweight reference to the actual image data. It allows to read the frame image into one of the
container classes, such as Indexed8bppBitmap or GcBitmap.

GcGifWriter is a platform-independent class making it possible to create a multi-frame GIF file or stream from a set
of individual images. You can append images, such as GrayscaleBitmap, Indexed8bppBitmap and so on, to a
GcGifWriter and specify the detailed settings controlling the frame storage format and the playback (animation)
properties.

DsHtml API Overview

DsHtml is a utility library that renders HTML to PDF file or an image in PNG, JPEG, and WebP format. DsHtml uses a
Chrome or Edge browser (already installed in the current system, or downloaded from a public web site) in headless
mode. Also, it doesn’t matter whether your .NET application is built for x64, x86 or AnyCPU platform target. The
browser is continuously working in a separate process.

The DS.Documents.Html library consists of a platform-independent main package that exposes the HTML rendering
functionality. The main package contains the following namespaces:

Namespaces Description

GrapeCity.Documents.Drawing It provides extension methods and formatting attributes for rendering HTML to
image.

The namespace comprises the following classes:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 19

® GcBitmapGraphicsExt
¢ HtmlTolmageFormat

GrapeCity.Documents.Html It provides methods for converting HTML to PDF or images and defines
parameters for the PDF or image.

The namespace comprises the following classes:

BrowserFetcher
GcHtmlIBrowser
HtmlPage
ImageOptions
JpegOptions
LaunchOptions
PageOptions
PdfMargins
PdfOptions
PngOptions
TimeOutOptions
WebpOptions

GrapeCity.Documents.Pdf It provides the extension methods for rendering HTML to image and represents
the formatting attributes for rendering HTML to image.

The namespace comprises the following classes:

o GcPdfGraphicsExt
e HtmiToPdfFormat

GrapeCity.Documents.Html.BrowserFetcher

The BrowserFetcher class has two static methods: GetSystemChromePath() and GetSystemEdgePath(). The methods
return the path to an executable file of Chrome or Edge browsers correspondingly. Another option is to download and
install Chromium into a local folder. You can create an instance of BrowserFetcher and pass the information such

as host, platform, revision, and the destination folder, if needed. Then, execute the
BrowserFetcher.GetDownloadedPath() method which downloads Chromium, if required, and returns the path to an
executable file for running the Chromium.

GrapeCity.Documents.Html.GcHtmIBrowser

The GecHtmlIBrowser class provides methods for converting HTML to PDF and images. With path to executable file for
running the Chromium fetched using BrowserFetcher class, we can create an instance of GcHtmIBrowser class which
effectively runs the browser process in the background. GcHtmIBrowser also accepts another parameter of
LaunchOptions type. The LaunchOptions class provides various settings specific to launching the browser.

The class has two important methods: NewPage(Uri uri) and NewPage(string html). Both methods return an
instance of HtmlPage class which represents a browser tab after navigating to the specified web address, file, or the
arbitrary HTML content. The second parameter of PageOptions type provides various properties to be applied to the
new browser page such as username, password for HTTP authentication, disabling JavaScript, lazy loading etc.

Z Note:

® We recommend using Chrome browser with GcHtmIBrowser class as Edge has some differences in the

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 20

implementation of some DevTools features.
® |[tis important to dispose every instance of the GcHtmIBrowser and HtmlPage classes after use.

Grapecity.Documents.Html.HtmIPage

The HtmlPage class represents a browser tab after navigating to the specified web address, file, or the arbitrary HTML
content. The class has methods such as SaveAsPng, SaveAsJpeg, and SaveAsWebp to save the current page as a raster
image of PNG, JPEG, or WebP formats respectively. The first parameter of these methods specifies the destination file
or stream. The second parameter passes the additional options for rendering HTML page as single image, scaling or
cropping the image, or setting the image quality.

The HtmlPage class contains the additional methods that help to interact with HTML page content. For example, you
can obtain the full HTML content of the page using the GetContent method. The SetContent method updates the
HTML markup. You can reload the web page with the Reload method or even execute a script in the browser context
using the EvaluateExpression method. The WaitForNetworkldle method helps with loading asynchronous web content.

GrapeCity.Documents.Html.ImageOptions

ImageOptions is the base abstract class for three specific classes: PngOptions, WebpOptions and JpegOptions. As
compared to PngOptions and WebpOptions classes, the JpegOptions class has an additional
property(CompressionQuality) for providing the JPEG compression quality (from 0% to 100%).

The FullPage property allows to capture the whole scrollable page. While the Clip property specifies the region to
capture (if FullPage is false). Clip and Scale properties work with the result of layout. They allow to extract and scale
some rectangular area and are applied before the rasterization stage. So, any graphics remains crisp with any scale
factor. When exporting HTML to images the Dots Per Inch (DPI) is not set in the resulting image file. It requires some
post-processing in order to set DPI.

GrapeCity.Documents.Drawing.HtmlTolmageFormat
The HtmITolmageFormat class represents the formatting attributes for rendering HTML to GcGraphics as an image.

Also, it helps converting HTML to a GeBitmap.

MaxTopMargin, MaxBottomMargin, MaxLeftMargin, MaxRightMargin properties specify the maximum allowable
margins of the resulting image (larger margins will be trimmed), in pixels. Setting these properties to a negative value
prevents trimming the margins. All those properties are equal to 0 by default which means no margins.

Other properties of HtmITolmageFormat are mapped to the corresponding properties of the
ImageOptions/PageOptions class:

HtmlTolmageFormat Property ImageOptions/PageOptions
Property

DefaultBackgroundColor PageOptions.DefaultBackgroundColor

WindowSize PageOptions.WindowSize

MaxWindowWidth PageOptions.WindowsSize.Width

MaxWindowHeight PageOptions.WindowsSize.Height

FullPage ImageOptions.FullPage

Scale ImageOptions.Scale

Clip ImageOption.Clip

GcBitmapGraphics Extension Methods

DsHtml provides 2 methods that extend GcBitmapGraphics and allow to render an HTML text or page as an image:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 21

® Draws an HTML string on this GeBitmapGraphics at a specified position.
bool GeBitmapGraphics.DrawHtml(GcHtmIBrowser browser, string html, float x, float y, HtmITolmageFormat
format, out SizeF size, bool loadLazylmages = false)

e Draws an HTML page provided by a URI on this GeBitmapGraphics at a specified position.
bool GeBitmapGraphics.DrawHtml(GcHtmIBrowser browser, Uri htmlUri, float x, float y, HtmITolmageFormat
format, out SizeF size, bool loadLazylmages = false)

Skia API Overview

Namespaces

Namespaces Description

Grapecity.Documents.Imaging.Skia Types used for drawing text and graphics using a highly optimized library
SKIA.

Skia comprises the following main classes:

® GcSkiaBitmap: It represents a bitmap in CPU memory. It works similar to GeBitmap and GcWicBitmap but
internally encapsulates an instance of SKBitmap object from SkiaSharp. GcSkiaBitmap can load images in JPEG,
PNG, and WEBP formats and save images in the same formats. Also, you can convert GcSkiaBitmap to a
GceBitmap or GceSkialmage and vice versa. It is possible to draw text and graphics on GcSkiaBitmap after
executing the CreateGraphics method which returns an instance of the associated GcSkiaGraphics.

e GcSkialmage: It is an immutable image based on SKImage. It looks like a lightweight version of GcSkiaBitmap
which does not support any modifications. You can load and save GcSkialmage to the same formats as
GcSkiaBitmap, and convert it to GeBitmap or GeSkiaBitmap. Both GeSkialmage and GeSkiaBitmap implement
the Image interface and hence can be drawn to any GcGraphics derived class.

® GcSkiaGraphics: It is the main drawing class which is derived from GcGraphics. You can create an instance of
GcSkiaGraphics from either GeSkiaBitmap or directly. When the drawing is done you can simply dispose the
graphics object in case of drawing to GcSkiaBitmap. If the GeSkiaGraphics object was created directly you can
execute ToSkialmage() or ToGcBitmap() methods to get a snapshot of the current drawing. If you draw text to
multiple instances of GcSkiaGraphics please make sure that you created and assigned the same SkiaFontCache
object to the FontCache property of all those instances.

For more information about Skia library, see Render using Skia Library.

Z] Note: In Dsimaging release version 6.0.0, the GcHtmlIRenderer class has been marked obsolete and has been
replaced by the new GcHtmIBrowser class. This is done to avoid GPL or LGPL licensed software that had to be
used in the custom chromium build. To know tips about migration from obsolete GcHtmIRenderer class, see Tips
to Migrate from Obsolete GcHtmIRenderer class.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 22

Features

This section comprises the features available in DsImaging.

Create Image
Create images and thumbnails in Dsimaging.
Load Image
Load images from file, stream, and byte array in DsImaging.
Save Image
Save images to different formats in DsImaging.
Work with GIF Files
Create a GIF file and read a GIF file to save the frames as separate images in DsImaging.
Work with TIFF Images
Create a multi-framed TIFF, save TIFF frames as separate images, and create tiled images in Dslmaging.
Work with ICO Files
Create an ICO image file and read images from an ICO file in Dslmaging.
Work with SVG Files
Create an SVG image file and render SVG images to PNG formats in DsImaging.
Process Image
Resize, crop, rotate, flip, clear, and combine images, convert an image to indexed image and change its resolution
in Dslmaging.
Apply Effects
Apply dithering, thresholding, gray scaling, and RGB effects on an image in Dsimaging.
Layouts
Place multiple elements on a PDF page or image without having to calculate positions of each element relative to
other ones.
Complex Graphic Layouts
Draw complex graphics, text, and images.
Tables
Create and work with tables easily and straightforwardly without having to think much about the size of table
columns, merged cells, or the layout of rotated text.
Work with Image colors
Adjust color intensity and image histogram levels, work with color channels and color quantization in DsImaging.
Apply Transparency Mask
Set transparency and set the background color for semi-transparent images in DsImaging.
Work with Graphics
Draw and fill shapes, clip region, align image, and apply matrix transformation in DsImaging.
Work with Text
Render and trim text, add watermark text on an image, draw text with anti-aliasing and different font types, add
complex bitmap glyphs, draw text around images, use RTL, and format paragraphs in DsImaging.
Work with EXIF Metadata
Extract and modify the EXIF metadata of an image using DsImaging.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 23

Create Image

An image is a visual representation of information that can be created using a combination of graphics and text. Dsimaging allows you
to create image(s) programmatically using such graphics, and text. It allows you to create and save images in various image formats
such as, JPEG, PNG, BMP, TIFF, SVG, ICO, GIF and WebP.

Dslmaging provides two main classes, namely GeBitmap and GeBitmapGraphics, that can be used to create image(s). The GeBitmap
class represents an uncompressed in-memory bitmap in 32-bit ARGB format. This class provides CreateGraphics method to create
graphics for GeBitmap. The CreateGraphics method creates an instance of GeBitmapGraphics class, which lets you draw shapes,
graphics, and text to an image. On the other hand, the GcBitmapGraphics class derives from the GeGraphics class and implements a
drawing surface for GeBitmap.

Create Image

To create an image:

1. Initialize the GeBitmap class.

2. Create a drawing surface to draw shapes and render text for an image using CreateGraphics method of the GcBitmap class
which returns an instance of the GeBitmapGraphics class.

3. Draw rounded rectangles and connecting lines in the image using DrawRoundRect and DrawLine methods of the
GcBitmapGraphics class respectively.

4. Apply the background color to the rectangles using FillRoundRect method of the GcBitmapGraphics class.

. Initialize the TextFormat class to define the style used to render text in the image.

6. Add text to the rectangles using DrawString method of the GeBitmapGraphics class.

C#

U

public void CreatelImage (int pixelWidth = 550, int pixelHeight = 350,
bool opaque = true, float dpiX = 96, float dpiY = 96)

//Initialize GcBitmap with the expected height/width
var bmp = new GcBitmap (pixelWidth, pixelHeight, true, dpiX, dpiY);

//Create graphics for GcBitmap
using (var g = bmp.CreateGraphics (Color.LightBlue))
{

// Rounded rectangle's radii:

float rx = 36, ry = 24;

//Define text format used to render text in shapes

var tf = new TextFormat ()

{
Font = Font.FromFile (Path.Combine ("Resources", "Fonts", "times.ttf")),
FontSize = 18

}i

// Using dedicated methods to draw and fill round rectangles:
var recl = new RectangleF (30, 110, 150, 100);

g.FillRoundRect (recl, rx, ry, Color.PaleGreen);
g.DrawRoundRect (recl, rx, ry, Color.Blue, 4);

//Draw string within the rectangle
g.DrawString ("Image", tf, recl, TextAlignment.Center,
ParagraphAlignment.Center, false);

var rec2 = new RectangleF (300, 30, 150, 100);
g.FillRoundRect (rec2, rx, ry, Color.PaleGreen);

g.DrawRoundRect (rec2, rx, ry, Color.Blue, 4);

//Draw string within the rectangle
g.DrawString ("Text", tf, rec2, TextAlignment.Center,

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 24

ParagraphAlignment.Center, false);

var rec3 = new RectangleF (300, 230, 220, 100);
g.FillRoundRect (rec3, rx, ry, Color.PaleGreen);
g.DrawRoundRect (rec3, rx, ry, Color.Blue, 4);

//Draw string within the rectangle
g.DrawString ("Graphics", tf, rec3, TextAlignment.Center,
ParagraphAlignment.Center, false);

//Draw lines between the rectangles
g.DrawLine (183, 160, 299, 80, Color.Red, 5, DashStyle.Solid);
g.DrawLine (183, 160, 299, 280, Color.Red, 5, DashStyle.Solid);

//Save GcBitmap to jpeg format
bmp.SaveAsJpeg ("Image.jpeg") ;

Back to Top

Create SVG Image using Code

To create an SVG image using code:

. Create a new SVG document by creating an instance of GeSvgDocument.

. Create an instance of SvgPathBuilder class. This class provides methods to execute the path commands.

. Define the path to draw the outline of shape to be drawn on SVG using methods such as AddMoveTo and AddCurveTo.
. Add these elements into root collection of 'svg' element using the Add method.

U WN =

for drawing the path.
. Define other properties of each path such as, Fill, Stroke etc.
. Save the document as SVG by using Save method of the GeSvgDocument class.
8. To save the SVG as image, use the DrawSvg method of the GeBitmapGraphics class.

~N o

C#

public static GcSvgDocument DrawCarrot ()
{
// Create a new SVG document
var doc = new GcSvgDocument () ;
var svg = doc.RootSvg;
svg.ViewBox = new SvgViewBox (0, 0, 313.666f, 164.519f);

//Create an instance of SvgPathBuilder class.
var pb = new SvgPathBuilder();

//Define the path

pb.AddMoveTo (false, 29.649f, 9.683f);

pb.AddCurveTo (true, -2.389f, -0.468f, -4.797f, 2.57f, -6.137f, 5.697f);
pb.AddCurveTo (true, 2.075f, -2.255f, 3.596f, -1.051f, 4.915f, -0.675f);
pb.AddCurveTo (true, -2.122f, 2.795f, -4f, 5.877f, -7.746f, 5.568f);
pb.AddCurveTo (true, 2.384f, -6.014f, 2.963f, -12.977f, 0.394f, -17.78f);
pb.AddCurveTo (true, -1.296f, 2.591f, -1.854f, 6.054f, -5.204f, 7.395f);
pb.AddCurveTo (true, 3.575f, 2.455f, 0.986f, 7.637f, 1.208f, 11.437f);
pb.AddCurveTo (false, 11.967f, 21.17f, 6.428f, 16.391f, 9.058f, 10.67f);
pb.AddCurveTo (true, -3.922f, 8.312f, -2.715f, 19.745f, 4.363f, 22.224f);
pb.AddCurveTo (true, -3.86f, 4.265f, -2.204f, 10.343f, 0.209f, 13.781f);
pb.AddCurveTo (true, -0.96f, 1.808f, -1.83f, 2.546f, -3.774f, 3.195f);
pb.AddCurveTo (true, 3.376f, 1.628f, 6.612f, 4.866f, 11.326f, 3.366f);

© 2024 MESCIUS inc. All rights reserved.

. Provide the SvgPathData using ToPathData method of the SvgPathBuilder class which represents sequence of instructions

Document Solutions for Imaging

pb.AddCurveTo -15.
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo

(true,
(
(
(
(
(
(
(
(
pb.AddCurveTo (
(
(
(
(
(
(
(
(
(

-1.005f,
3.216f,
-1.583f%,
1.877f,
-0.406f%,
2.834f,
-0.893fF,

5.359f,

2.345f,
0.267f,
2.84f,
-3.088f,
4.826f,
-4.894f,
4.245f,
0.445¢f,

-12.389f, 9.499f,
14.492f, -2.308f,
1.431f, 2.28f, 2.86f,

3.978f£, -2.374f,

-2.12f£, 9.27f,

6.922f, -5.367f,

-3.146f, 8.646f,
11.123f, -3.934f,
12.688f, 3.209f, 28.763f, -1.932f,
1.024f£, 0.625f, 1.761f, -4.98f, 1.023f,

72.823f, 55.357f, 69.273f, 68.83f,
-0.492f, -0.584f, 1.563f, -5.81f, 1f,
-1.048f, -3.596f, -3.799f, -6.249f, -7.
-2.191f, 0.361f, -5.448f, 0.631f,
2.923f, -5.961f, 9.848f, -4.849f,
-4.759f, 2.039f, -7.864f, -2.808f,
1.63f, -3.377f, 4.557f, -2.863f,
-3.817f, -2.746f, -9.295f, -5.091f,

33.228f, 18.615f, 32.064f, 13.119f,

true,
true,
true,
true,
true,
true,
true,
true,
true,
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo (false,

false,
true,
true,
true,
true,
true, -12.
true,

true,

//Add elements into Children collection of SVG
svg.Children.Add (new SvgPathElement ()
{

FillRule SvgFillRule.EvenOdd,
Fill new SvgPaint (Color.FromArgb (0x43,
PathData pb.ToPathData(),

0x95, 0x39)),

1)
pb.Reset () ;
pb.AddMoveTo (false,
pb.AddCurveTo (true,
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
pb.AddCurveTo (
(
(
(
(
(
(
(
(
(
(
(
(
(

29.649f,
-2.389f,
2.075f,
-2.122f%,
2.384f,

9.683f);

-0.468f,
-2.255f,

2.795¢%,
-6.014f,

-4.797£, 2.57f,
3.596f, -1.051f,
-4f, 5.877f£, -7.746f,
2.963f, -12.977f,
-1.296f, 2.591f, -1.854f, 6.054f,
3.575f, 2.455f, 0.986f, 7.637f, 1.208f,

11.967£, 21.17f, 6.428f, 16.391f,
-3.922f, 8.312f, -2.715f, 19.745f,
-3.86f, 4.265f, -2.204f, 10.343f,
-0.96f, 1.808f, -1.83f, 2.546f,
3.376f, 1.628f, 6.612f, 4.866f,
-1.005f, 2.345f, -12.389f, 9.499f,
3.216f, 0.267f, 14.492f, -2.308f,
-1.583f, 2.84f, 1.431f, 2.28f, 2.86f,
1.877f£, -3.088f, 3.978f, -2.374f,
-0.406f, 4.826f, -2.12f, 9.27f,
2.834f, -4.894f, 6.922f, -5.367f,
-0.893f, 4.245f, -3.146f, 8.646f,
5.359f, 0.445f, 11.123f, -3.934f,
12.688f, 3.209f, 28.763f, -1.932f,
1.024f, 0.625f, 1.761f, -4.98f, 1.023f,

72.823f, 55.357f, 69.273f, 68.83f,
-0.492f, -0.584f, 1.563f, -5.81f, 1f,
-1.048f, -3.596f, -3.799f, -6.249f, -7.
-2.191f, 0.361f, -5.448f, 0.631f,
2.923f, -5.961f, 9.848f, -4.849f,
-4.759f, 2.039f, -7.864f, -2.808f,
1.63f, -3.377£, 4.557f, -2.863f,
-3.817f, -2.746f, -9.295f, -5.0091f,

true,
true,
true,
true,
true,
false,
true,
true,
true,
true,
true, -15.
true,
true,
true,
true,
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo

true,
true,
true,
true,
true,
false,
true,
true,
true,
true,
true, -12.
true,
true,

© 2024 MESCIUS inc. All rights reserved.

16.903f,
4.56f);
5.677f,
-5.447f,
10.474f,
-7.077f£,
13.509f,
39.894f,

52.
-8.825f);

-7.84f,
12.28f,

6.786f,
-14.56f,
29.649f,

-6.137f%,
4.915f,

0.394f,
-5.204f,

9.058¢,
4.363f,
0.209f,
-3.774f%,
11.326f,

16.903f,
4.56f);
5.677f,
-5.447¢%,
10.474f1£,
-7.077f£,
13.509%,
39.894f,

52.

-7.84f,

12.28f,

6.786f,
-14.56f,

25

10.35f);
-5.349f);

16f,

-3.311f);
13.582f);
-5.879f
10.479fF
-9.944f

7.084f

-5.852f);
651f, 54.498f);

’
’

’

)
)
)
) ;

’

594f, -6.027f);
0.159f);
-11.3961);
329f, -1.018f);
-3.755f);
-0.129f);
9.683f);

5.697f);
-0.675f);
5.568f) ;
-17.78f);
7.395f);
.437f);
10.67£) ;
22.224f);
13.781f);
3.195f);
3.366f);
lef, 10.35f);
-5.349f);

11

-3.311f);
13.582f);
-5.879f
10.479f
-9.944f

7.084f

-5.852f);
651f, 54.498f);

’
’

’

)
)
)
) ;

’

-8.825f);

594f, -6.027f);
0.159f);
-11.3961);
329f, -1.018f);
-3.755f);
-0.129f);

Document Solutions for Imaging

pb.AddCurveTo (false, 33.228f, 18.615f, 32.064f, 13.119f,

pb.AddClosePath() ;
//Add elements into Children collection of SVG
svg.Children.Add (new SvgPathElement ()
{
Fill = SvgPaint.None,
Stroke = new SvgPaint (Color.Black),
StrokeWidth = new SvgLength(2.292f),
StrokeMiterLimit = 14.3f,
PathData = pb.ToPathData(),
1)

pb.Reset () ;
pb.AddMoveTo (false, 85.989f, 101.047f);
pb.AddCurveTo (true, 0f, Of,
pb.AddCurveTo (true, 7.828f,
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo
pb.AddCurveTo

true, 8.248f,
true, 0f, Of,
true, 10.871f, 6.353f, 20.142f, 2.163f,

true, 10.747f, 1.886f, 25.801f, 5.607f,

(
(
(
(
(
(
(
(
(
(
(
(
(
(true, -8.079f, -4.14f, -18.215f, -7.4¢6f,
(
(
(
(
(
(

29.649f, 9.683f);

3.202f, 3.67f, 8.536f, 4.673f);

1.472£, 17.269f, 0.936f, 17.269f, 0.936f);
true, 0f, 0f, 2.546f, 5.166f, 10.787f, 7.338f);

2.168f, 17.802f, 0.484f, 17.802f, 0.484f);

8.781f, 1.722f, 19.654f, 8.074f);
20.142f, 2.163f);
true, 0f, 0f, 1.722f, 3.118f, 14.11f, 9.102f);
true, 12.39f, 5.982f, 14.152f, 2.658f, 28.387f, 4.339f);
true, 14.232f, 1.672f, 19.36f, 5.568f, 30.108f, 7.449f);
25.801f, 5.607f);
true, 0f, 0f, 4.925f, 0.409f, 12.313f, 6.967f);
true, 7.381f, 6.564f, 18.453f, 4.506f, 18.453f, 4.506f);
true, 0f, 0f, -10.869f, -6.352f, -15.467f,
true, -4.594f, -4.342f, -16.901f, -11.309f, -24.984f, -15.448f);
-30.233f, -11.924f);
true, -12.018f, -4.468f, -6.934f, -6.029f, ;
true, -16.695f, -7.822f, -13.662f, -8.565f, -28.347f, -10.776f);
true, -14.686f, -2.208f, -6.444f, -11.933f, -23.917f, -16.356f)
true, -17.479f, -4.423f, -11.037f, -4.382f, -26.016f, -9.093f);
true, -14.97f, -4.715f, -10.638f, -10.104f, -26.665f, -13.116f);
true, -14.149f, -2.66f, -21.318f, 0.468f,

-10.702f) ;

-23.632f, -13.855f)

’

-27.722f, 11.581f);

pb.AddCurveTo (false, 73.104f, 89.075f, 85.989f, 101.047f, 85.989f, 101.047f);

// Add elements into Children collection of SVG
svg.Children.Add (new SvgPathElement ()

{
FillRule = SvgFillRule.EvenOdd,

Fill = new SvgPaint (Color.FromArgb (0xFF, 0xC2, 0x22)),

PathData = pb.ToPathData(),
1)

pb.Reset ()
pb.AddMoveTo (false, 221.771f, 126.738f);

pb.AddCurveTo (true, 0f, 0f, 1.874f, -4.211f, 4.215f, -6.087f);

pb.AddCurveTo (true, 2.347f, -1.868f, 2.812f, -2.339f,
pb.AddMoveTo (false, 147.11f, 105.122f);
pb.AddCurveTo (true, 0f, 0f, 0.882f, -11.047f, 6.765f,
pb.AddCurveTo (true, 5.879f, -4.745f, 10.882f, -5.568f,
pb.AddMoveTo (false, 125.391f, 86.008f);

2.812f, -2.339f);

-15.793f) ;
10.882f, -5.568f);

pb.AddCurveTo (true, 0f, 0f, 2.797f, -6.289f, 6.291f, -9.081f);
pb.AddCurveTo (true, 3.495f, -2.791f, 4.194f, -3.49f, 4.194f, -3.49f);

pb.AddMoveTo (false, 181.153f, 124.8f);
pb.AddCurveTo (true, 0f, 0f, -1.206f, -4.014f, -0.709f,

-6.671f);

pb.AddCurveTo (true, 0.493f, -2.66f, 0.539f, -3.256f, 0.539f, -3.256f);

pb.AddMoveTo (false, 111.704f, 107.641f);
pb.AddCurveTo (true, 0f, 0f, -1.935f, -6.604f, -1.076f,

© 2024 MESCIUS inc. All rights reserved.

-10.991f);

26

Document Solutions for Imaging

pb.AddCurveTo (true, 0.862f, -4.389f, 0.942f, -5.376f, 0.942f, -5.376f);
pb.AddMoveTo (false, 85.989f, 101.047f);

pb.AddCurveTo (true, 0f, 0f, 3.202f, 3.67f, 8.536f, 4.673f);

pb.AddCurveTo (true, 7.828f, 1.472f, 17.269f, 0.936f, 17.269f, 0.936f);
pb.AddCurveTo (true, 0f, 0f, 2.546f, 5.166f, 10.787f, 7.338f);

pb.AddCurveTo (true, 8.248f, 2.168f, 17.802f, 0.484f, 17.802f, 0.484f);
pb.AddCurveTo (true, 0f, 0f, 8.781f, 1.722f, 19.654f, 8.074f);

pb.AddCurveTo (true, 10.871f, 6.353f, 20.142f, 2.163f, 20.142f, 2.163f);
pb.AddCurveTo (true, 0f, 0f, 1.722f, 3.118f, 14.11f, 9.102f);

pb.AddCurveTo (true, 12.39f, 5.982f, 14.152f, 2.658f, 28.387f, 4.339f);
pb.AddCurveTo (true, 14.232f, 1.672f, 19.36f, 5.568f, 30.108f, 7.449f);
pb.AddCurveTo (true, 10.747f, 1.886f, 25.801f, 5.607f, 25.801f, 5.607f);
pb.AddCurveTo (true, 0f, 0f, 4.925f, 0.409f, 12.313f, 6.967f);

pb.AddCurveTo (true, 7.381f, 6.564f, 18.453f, 4.506f, 18.453f, 4.506f);
pb.AddCurveTo (true, 0f, 0f, -10.869f, -6.352f, -15.467f, -10.702f);
pb.AddCurveTo (true, -4.594f, -4.342f, -16.901f, -11.309f, -24.984f, -15.448f);
pb.AddCurveTo (true, -8.079f, -4.14f, -18.215f, -7.46f, -30.233f, -11.924f);
pb.AddCurveTo (true, -12.018f, -4.468f, -6.934f, -6.029f, -23.632f, -13.855f);
pb.AddCurveTo (true, -16.695f, -7.822f, -13.662f, -8.565f, -28.347f, -10.776f);
pb.AddCurveTo (true, -14.686f, -2.208f, -6.444f, -11.933f, -23.917f, -16.356f);
pb.AddCurveTo (true, -17.479f, -4.423f, -11.037f, -4.382f, -26.016f, -9.093f);
pb.AddCurveTo (true, -14.97f, -4.715f, -10.638f, -10.104f, -26.665f, -13.116f);
pb.AddCurveTo (true, -14.149f, -2.66f, -21.318f, 0.468f, -27.722f, 11.581f);
pb.AddCurveTo (false, 73.104f, 89.075f, 85.989f, 101.047f, 85.989f, 101.047f);
pb.AddClosePath() ;

//Add elements into Children collection of SVG

svg.Children.Add (new SvgPathElement ()
{

Fill =
Stroke new SvgPaint (Color.Black),
StrokeWidth new SvgLength (3.056f),
StrokeMiterLimit 11.5f,

PathData = pb.ToPathData(),

SvgPaint.None,

1)

//Save the document as svg

doc.Save ("demo.svg") ;

return doc;
}
public static void CreateAndRenderSvgTolImage ()
{

170 * factor,

int factor = 2;
using (var bmp = new GcBitmap (320 * factor,
using (var gr = bmp.CreateGraphics (Color.White))

{

gr.DrawSvg (DrawCarrot (), PointF.Empty);

// Save the SVG as image
bmp.SaveAsPng ("carrot.png") ;

Console.WritelLine ("CreateAndRenderSvgToImage") ;

Create Thumbnail

true,

96f * factor,

27

96f * factor))

Dslmaging allows you to create thumbnails of images using Resize method of the GeBitmap class. The Resize method takes
InterpolationMode as a parameter to generate the transformed image which is stored as a GecBitmap instance. The interpolation

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 28

parameter can be set using the InterpolationMode enumeration which specifies the algorithm used to scale images. This affects the
way an image stretches or shrinks.

Original Image Thumbnail

To create a thumbnail of an image:

1. Load an image in a GeBitmap instance.
2. Determine the height and width for the thumbnail.
3. Invoke the Resize method of GcBitmap class with thumbnail height, width, and interpolation mode as its parameters.

C#

public void CreateThumbnail (string origImagePath, string thumbImagePath, int thumbWidth, int
thumbHeight)
{
using (var origBmp = new GcBitmap (origImagePath, null))
using (var thumbBmp = new GcBitmap (thumbWidth, thumbHeight, true))
{
thumbBmp.Clear (Color.White) ;
float k = Math.Min((float)thumbWidth / origBmp.PixelWidth, (float)thumbHeight /
origBmp.PixelHeight) ;

var interpolationMode = k < 0.5f ? InterpolationMode.Downscale
InterpolationMode.Cubic;
int bmpWidth = (int) (k * origBmp.PixelWidth + 0.5f);

int bmpHeight = (int) (k * origBmp.PixelHeight + 0.5f);
using (var bmp = origBmp.Resize (bmpWidth, bmpHeight, interpolationMode))
{
thumbBmp.BitBlt (bmp, (thumbWidth - bmpWidth) / 2, thumbHeight - bmpHeight) ;

thumbBmp . SaveAsJpeg (thumbImagePath) ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 29

For more information about creating images using Dslmaging, see DsImaging sample browser.

Z Note: For rendering large or complex text and graphics, you can use Skia library. For more information about the library and its
usage, see Render using Skia Library.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-imaging/demos/basics/images/bmp-transforms/code-cs

Document Solutions for Imaging 30

Load Image

Dslmaging allows you to load images using Load method of the GcBitmap class. You can load images from file,
stream, and byte arrays.

Purpose Method
Load image from a file Load (string, System.Drawing.Rectangle?)

Load image from a Load (System.lO.Stream,
stream System.Drawing.Rectangle?)

Load image from a byte Load (byte[], System.Drawing.Rectangle?)
array

Load Image from File

To load an image from file, get the image path, store it in a variable and load the file in GeBitmap object using the
Load method with the variable as its parameter.

C#

public void LoadSaveFile ()
{
//Get the image path
var origImagePath = Path.Combine ("Resources", "Images",
"color-woman-postits.jpg");

//Initialize GcBitmap
GecBitmap fileBmp = new GcBitmap () ;

//Load image from file
fileBmp.Load (origImagePath) ;

//Add title to image
using (var g = fileBmp.CreateGraphics/())

{

var rc new RectangleF (512, 0, 100, 100);
var tf = new TextFormat
{
Font = Font.FromFile (Path.Combine ("Resources", "Fonts",
"times.ttf")),
FontSize = 40
}i
g.DrawString ("Hello World!", tf, rc, TextAlignment.Center,
ParagraphAlignment.Center, false);

//Save image to file
fileBmp.SaveAsJpeg ("color-woman-postits—-file.jpg");

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

Back to Top

Load Image from Stream

To load an image from stream, instantiate the FileStream class to read the image in the stream and load the file in

GcBitmap object using the Load method with FileStream object as its parameter.

C#

public void LoadSaveStream/()
{
//Get the image path
var origImagePath = Path.Combine ("Resources", "Images",

"color-woman-postits.jpg");

//Initialize GcBitmap
GcBitmap streamBmp = new GcBitmap () ;

//Load image from stream

FileStream stm = new FileStream(origImagePath, FileMode.Open);
streamBmp.Load (stm) ;

stm.Close () ;

//Add title to image
using (var g = streamBmp.CreateGraphics())

{
var rc = new RectangleF (512, 0, 100, 100);

var tf = new TextFormat

{

Font = Font.FromFile (Path.Combine ("Resources", "Fonts",
"times.ttf")),
FontSize = 40
}i
g.DrawString ("Hello World!", tf, rc, TextAlignment.Center,
ParagraphAlignment.Center, false);

//Save GcBitmap to stream
MemoryStream outStream = new MemoryStream() ;
streamBmp.SaveAsJpeg (outStream) ;

}
Back to Top

Load Image from Byte Array

To load an image from byte array, you need to read all the bytes of an image using the ReadAllBytes method and

load the created byte array in GecBitmap using the Load method.

C#

public void LoadSaveByteArray ()
{

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 32

//Get the image path
var origImagePath = Path.Combine ("Resources", "Images",
"color-woman-postits.jpg");

//Initialize GcBitmap
GcBitmap byteArrayBmp = new GcBitmap (),

//Load image from byte array
byte[] imgArray = File.ReadAllBytes (origImagePath) ;
byteArrayBmp.Load (imgArray) ;

//Add title to image
using (var g = byteArrayBmp.CreateGraphics())
{

var rc = new RectangleF (512, 0, 100, 100);

var tf = new TextFormat
{
Font = Font.FromFile (Path.Combine ("Resources", "Fonts",
"times.ttf")),
FontSize = 40
bi
g.DrawString ("Hello World!", tf, rc, TextAlignment.Center,
ParagraphAlignment.Center, false);

//Save image to file
byteArrayBmp.SaveAsJpeg ("color-woman-postits-byteArray.jpg");
}

[rE| Note: For rendering large or complex text and graphics, you can use Skia library. For more information about the
library and its usage, see Render using Skia Library.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 33

Save Image

DsImaging allows you to save images in various formats, such as JPEG, PNG, BMP etc. Each of these formats have a
dedicated method as shown below:

Format Method

JPEG (with specified quality) SaveAsJpeg

PNG SaveAsPng

BMP SaveAsBmp

TIFF SaveAsTiff

GIF SaveAsGif

SVG ToSvgDocument (For more
information, see Work with SVG
Files)

ICO Save (For more information,

see Work with ICO Files)

WebP SaveAsWebP (For more
information, see Work with WebP
Files)

Each of these methods has two overloads, one saves the image in a file and other saves the image in a stream.

C#
// Save image

bmp.SaveAsJpeg ("color-postits.jpg") ;

// Save image using stream
bmp.SaveAsJdpeg (stream) ;

| Note: For rendering large or complex text and graphics, you can use Skia library. For more information about the
library and its usage, see Render using Skia Library.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 34

Work with GIF files

Graphic Interchange Format (GIF) is a commonly used web image format to create animated graphics. GIF file is
created by combining multiple images into a single file. Unlike the JPEG image format, GIF file uses lossless data
compression technique to reduce the file size without degrading the visual quality.The image data in a GIF file is
stored using indexed color which implies that a standard GIF image can include a maximum of 256 colors.

Apart from reading and creating a GIF file, Dslmaging provides control over various features of GIF files. It allows you
to set comments for a GIF file. The comment string can be encoded in various formats supported by DsIimaging. While
creating a multiframed GIF file by appending frames, you can use either an indexed image, bitmap, bilevel bitmap or a
grayscale image. It also lets you set the number of iterations that should be executed by the animated GIF file.

The below image represents the creation of a GIF file using different frames and the extraction of different frames as
images while reading a GIF file.

Creating a
GIF file ~

Reading a
GIF file

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 35

Reading Frames from a GIF File

Dslmaging provides GeGifReader class that helps you to read a GIF file and save the frames as separate images. The
constructor of this class accepts the GIF file name or stream as a parameter and loads the contents of GIF file. The
information about the individual GIF frames is collected in the Frames property of the GcGifReader class. While
extracting the frames, you can process them in a number of ways, store them in different formats or add them as
input frames to GcGifWriter to create a GIF.

To read a multiframe GIF file and save its frames as separate images:

1. Initialize the GeGifReader class and pass the GIF file name as a parameter to the constructor.

2. Access the GIF frames from the GIF file using Frames property of the GcGifReader class.

3. Load the frame using ToGcBitmap method of GcWicBitmap and save it as an image using the SaveAsJpeg
method of GcBitmap class.

C#
//Read frames form the GIF image

GcGifReader reader = new GceGifReader ("Images/radar.gif");

var frames = reader.Frames;

using (var bmp = new GcBitmap())

{
//Saving GIF frames as individual images

for (var i = 0; 1 < frames.Count; i++)

{
frames[i].ToGcBitmap (bmp, 1 - 1);
bmp.SaveAsJpeqg ("Images/Frames/Radar/fr" + (i + 1).ToString() + ".jpg");

Back to Top

Creating a GIF File

The Dslmaging library provides GeGifWriter class which helps you to create a GIF file using multiple images.
The AppendFrame method of GeGifWriter class appends an image as a frame to the GIF file. You can invoke this
method multiple time to append multiple frames and create a GIF file.

To create a GIF file using multiple images:
1. Initialize the GeGifWriter class and pass the GIF file name as a parameter to the constructor.

2. Instantiate GeBitmap class to load the images which will serve as frames for the multiframe GIF file.
3. Invoke the AppendFrame method of GcGifWriter class to append frames to the GIF file.

C#

//Creating GIF image using set of images
GcGifWriter writer = new GeGifWriter ("Images/newradar.gif™);

GcBitmap bmp = new GcBitmap();
bmp.Load ("Images/Frames/frl.jpg") ;

writer.AppendFrame (bmp, 255,0,0,GifDisposalMethod.DoNotDispose, 20, false) ;

bmp.Load ("Images/Frames/fr2.jpg") ;
writer.AppendFrame (bmp, 255, 0, 0, GifDisposalMethod.DoNotDispose, 20, false);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 36

bmp.Load ("Images/Frames/fr3.jpg") ;
writer.AppendFrame (bmp, 255, 0, 0, GifDisposalMethod.DoNotDispose, 20, false);

bmp.Load ("Images/Frames/frd.jpg") ;
writer.AppendFrame (bmp, 255, 0, 0, GifDisposalMethod.DoNotDispose, 20, false);

Back to Top

For more information about working with GIF images using Dslmaging, see DsImaging sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-imaging/demos/basics/gif/make-gif/code-cs

Document Solutions for Imaging 37

Work with TIFF Images

Tagged Image File Format (TIFF) is a widely used file format for storing raster images. A primary goal of TIFF is to
provide a rich environment within which applications can exchange image data. TIFF can describe bi-level, grayscale,
palette-color, and full-color images with optional transparency and Exif metadata. It supports several compression
schemes that allow developers to choose the best space or time tradeoff for their applications. In general, TIFF can
store lossless and lossy (JPEG-based) image data. Dslmaging supports only lossless compression for TIFF frames. PNG
format usually offers slightly better compression ratio, but it is limited to one image per file. TIFF can store multiple
images in the same file. For more info see the Adobe TIFF specifications.

Reading Images from TIFF

Dslmaging provides two main classes that help extracting images from a multi-frame TIFF: GcTiffReader

and TiffFrame. To read an image from a single-frame TIFF, just load the image into a GcBitmap as other supported
image formats, like JPEG or BMP. Also, when a TIFF file contains JPEG-based frames, you can use the platform-
dependent GcWicTiffReader and WicTiffFrame classes from GrapeCity.Documents.Imaging.Windows namespace.
However, there is no such option available for non-Windows systems.

GcTiffReader accepts a file name or stream as the constructor argument and immediately loads the contents of TIFF
without loading the actual image data. The information about TIFF frames is collected in the Frames property of the
GcTiffReader class. The list contains objects of type TiffFrame providing the detailed information about the specific
frame, including its size, format, and various metadata. Also, TiffFrame allows to read the frame image into the regular
image storing classes of DsImaging, such as GcBitmap, BilevelBitmap, GrayscaleBitmap, and palette-based bitmaps.
These images can be processed in a number of ways, stored in different formats or added as frames to a GcTiffWriter.

To read a multiframe TIFF and save its frames as separate images:

1. Initialize the GcTiffReader class and pass the multi frame TIFF as a parameter to the constructor.
2. Access the list of frames from the TIFF image using Frames property of the GcTiffReader class.

3. Invoke the ReadAsGcBitmap method to get the frame image as GcBitmap object.

4. Save the image to a file in PNG format using SaveAsPng method.

C#
//Initialize TiffReader class and load the Tiff image

string tiffFilePath = Path.Combine ("Resources", "Images", "Test.tif");
GcTiffReader tr = new GcTiffReader (tiffFilePath);

string pngName = "FrameImage";

//Save separate images for each Tiff frame
for (int i = 0; 1 < tr.Frames.Count; i++)
{
using (var bmp = tr.Frames[i].ReadAsGcBitmap())
{
bmp.SaveAsPng($"{pngName}_{ (1 + 1)}.png");

Back to Top

Creating a Multiframe TIFF

To create a single-frame TIFF, you can use the GeBitmap.SaveAsTiff() method which accepts either file path or the
output stream as an argument. Now, you can create a multi-frame TIFF by creating an instance of the GcTiffWriter

© 2024 MESCIUS inc. All rights reserved.

https://www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFF6.pdf

Document Solutions for Imaging 38

class with a specified file path or stream. Then, you can add various bitmaps to the output TIFF using

the AppendFrame method of GcTiffWriter. Further, you can pass an instance of the TiffFrameSettings class to the
GcBitmap.SaveAsTiff() method as well as to the AppendFrame() method. Also, DefaultFrameSettings property of the
GcTiffWriter class allows you to create the common settings for all the frames. For more information on TIFF frame
settings, see TIFF Configuration Options.

To create a multiframe TIFF by combining four images:

Create an instance of the GcBitmap class to load the images which will serve as frames for the multiframe TIFF.
Initialize the GcTiffWriter class by passing the output file name as its parameter.

Invoke the AppendFrame method of GcTiffWriter class for each frame to write frames to the output stream.
Optionally, set the compression and orientation of the frame using Compression and Orientation properties
of the TiffFrameSettings class through TiffCompression and TiffOrientation enumerations respectively.

C#

A=

string imagePath = Path.Combine ("Resources", "Images", "MultiFrameTiff.tif");

//Initialize TiffWriter class to generate multi-frame TIFF
GecTiffWriter tiffWriter = new GecTiffWriter (imagePath);

//Define Tiff frame settings

TiffFrameSettings settings = new TiffFrameSettings();
settings.Compression = TiffCompression.PackBits;
settings.Orientation = TiffOrientation.TopLeft;

//Initialize GcBitmap to load images for frames

GcBitmap origbmp = new GcBitmap ()

//Load image and append first frame

imagePath = Path.Combine ("Resources", "Images", "TiffFrames", "Imgl.png");
settings.ImageDescription = "Framel";

origbmp.Load (imagePath) ;

tiffWriter.AppendFrame (origbmp, settings);

//Load image and append second frame

imagePath = Path.Combine ("Resources", "Images", "TiffFrames", "Img2.png");
origbmp.Load (imagePath) ;

settings.ImageDescription = "Frame2";

tiffWriter.AppendFrame (origbmp, settings);

tiffWriter.Dispose()
Back to Top

TIFF Configuration Options

Dslmaging gives full control over the format and settings of an output TIFF frame with the TiffFrameSettings class.
The frame settings include various metadata, such as the image description, the date of image creation and so on.
Also, there are some important properties controlling the compression scheme of the frame image. For the best
compression of a full-color image, you can set the Compression property to TiffCompressioin.Deflate or LZW.

The Differencing and Planar properties also can help in better compression results. In the case of bilevel and
grayscale images, the other compression schemes can also fit well. With GeBitmap it is possible to shrink the color
channels (Red, Green, Blue, Alpha) from 8 bits to some lower value using one of the error-diffusion algorithms (see
GcBitmap.ShrinkARGBFormat and GrayscaleBitmap.ShrinkPixelFormat methods). Then, you can save such an image

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 39

as TIFF frame specifying the exact number of bits per channel using the BitsPer[Color]Channel or BitsPerGrayscale
properties of TiffframeSettings. Before doing that please make sure that, just like GeTiffReader, your TIFF viewer
application supports TIFF frames with variable bits per channel.

Creating Tiled image

Tiled TIFF frames are, generally preferred over stripped frames in case of large images as well as for images where the
color areas change more frequently in the horizontal direction than in vertical. For more information, see “Tiled
Images” section in the TIFF specification. In DsImaging, you can create tiled images by setting the TileWidth

and TileHeight properties to some positive values. Please note that it might affect the compression ratio.

To create a tiled TIFF image consisting of four frames:

1.

Create an instance of the GeBitmap class to load the images which will serve as frames for the multiframe TIFF.

2. Initialize the GcTiffWriter class by passing the output file name as its parameter.

3. Also, set the tile height and tile width using the TileHeight and TileWidth properties of the TiffframeSettings
class.

4. Invoke the AppendFrame method of GcTiffWriter class for each frame to write frames to the output stream.
C#
string imagePath = Path.Combine ("Resources", "Images", "TiledTiff.tif");
//Initialize TiffWriter class to generate multi-frame TIFF
GecTiffWriter tiffWriter = new GcTiffWriter (imagePath);
//Define Tiff frame settings
TiffFrameSettings settings = new TiffFrameSettings();
settings.TileHeight = 200;
settings.TileWidth = 200;
//Initialize GcBitmap to load images for frames
GcBitmap origbmp = new GcBitmap ()
//Load image and append first frame
imagePath = Path.Combine ("Resources", "Images", "TiffFrames", "Imgl.png");
settings.ImageDescription = "Framel";
origbmp.Load (imagePath) ;
tiffWriter.AppendFrame (origbmp, settings);
//Load image and append second frame
imagePath = Path.Combine ("Resources", "Images", "TiffFrames", "Img2.png");
origbmp.Load (imagePath) ;
settings.ImageDescription = "Frame2";
tiffWriter.AppendFrame (origbmp, settings);
tiffWriter.Dispose()

Back to Top

For more information about working with TIFF images using Dslmaging, see DsImaging sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFF6.pdf
https://www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFF6.pdf
https://developer.mescius.com/documents-api-imaging/demos/basics/tiff/extract-frames/code-cs

Document Solutions for Imaging 40

Work with ICO files

Dslmaging supports ICO file format which is a widely used image file format for computer icons. It stores a collection
of small images of different sizes and color sets. The images can be saved in ICO file format by using Gclco class. You
can work with different frames of an ICO file by using the methods of IcoFrame class.

You can also load and save icons in various encodings by using lcoFrameEncoding enumeration which sets the
encoding of an ICO frame image. For example, a frame can be stored in PNG format or as indexed image with color
palette and transparency mask.

Create an ICO File

DsImaging lets you create the frames of an ICO image file from scratch or load from an existing ICO file. These frames
can also be converted to GeBitmap or created from existing GeBitmap instances. The whole collection can then be
saved to an ICO file. The frames in a multiframe ICO image file can be appended, removed, modified, or reordered.

To create an ICO file from a PNG image:
1. Instantiate GeBitmap class and load the PNG file in GeBitmap instance.

2. Initialize Gcelco class and add the bitmap instance as an ICO frame.
3. Save the ICO image file using Save method.

C#

//Load a png file
var srcPath = System.IO.Path.Combine ("gcd-hex-logo.png");
var srcBmp = new GcBitmap (srcPath);

//Resize the image
var bmp256 = srcBmp.Resize (256, 256);

var ico = new GcIco();
//Add ico file frame
ico.Frames.Add (new IcoFrame (bmp256, IcoFrameEncoding.Png));

//Save ico image file
ico.Save ("GecDocs.ico") ;

Read Images from ICO File

You can load the image data in ICO format from a file, stream, or an array of bytes. It can then be saved to a stream or
file. The Gcelco class must be disposed off after use, to prevent memory loss in image frames. Also, dispose off any
removed frames from the collection.

To read a multiframe ICO file and save its frames as separate PNG images:

1. Load an ICO file by instantiating the Gclco class.
2. Convert the ICO frames to GcBitmap and save them as separate PNG files.
C#

//Load an ico file
using (var ico = new GcIco ("Windows.ico"))

{

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

for (int 1

{

0; 1 < ico.Frames.Count; i++)

//Save png file for every ico frame

using (var bmp = ico.Frames[i].ToGcBitmap())

{
bmp.SaveAsPng ($"image{i}.png");

Limitations

® Some rare frame encodings, such as indexed images with 2 bits per pixel, are not supported.
® Bitmap compressions other than BI_RGB, are not supported.

® CUR format has limited support (Gclco does not distinguish it from ICO and cannot save images in CUR
format).

© 2024 MESCIUS inc. All rights reserved.

41

Document Solutions for Imaging 42

Work with SVG Files

Dslmaging supports SVG (Scalable Vector Graphics) image file format which allows you to render vector images at any
size without loss of quality.

The GeSvgDocument class is provided in the GrapeCity.Documents.Svg namespace in the DsImaging library. This
class allows you to create, load, inspect, modify and save the internal structure of an SVG image.

SVG graphics can be loaded from files or strings into the object model of GeSvgDocument class, further drawn to
the GeGraphics class to effectively output the result to GcPdfDocument, GeBitmap or GcWicBitmap classes. SVG

documents can be drawn to objects derived from GcGraphics, such as GePdfGraphics or GeBitmapGraphics using the
GcGraphics.DrawSvg method overloads.

Render SVG to PNG

To render an SVG image to a PNG image and output the result to GeBitmap class:

1. Load an SVG image by using the FromFile method of GeSvgDocument class.
2. Initialize the GcBitmap class and create a drawing surface using CreateGraphics method of the GeBitmap class.
3. Draw the specified SVG document at a location in PDF document by using DrawSvg method of GcGraphics

class.
4. Save the image to a file in PNG format using SaveAsPng method.
C#
using var svg = GcSvgDocument.FromFile ("Smiling-Girl.svg");

var rect = svg.Measure (PointF.Empty) ;

float factor 1.5£;

using var bmp = new GcBitmap ((int) (rect.Width * factor + 0.95f), (int)
(rect.Height * factor + 0.95f), true, 96f * factor, 96f * factor);
using (var g = bmp.CreateGraphics(Color.White))

{

g.DrawSvg (svg, new PointF (-rect.X, -rect.Y));
}
bmp.SaveAsPng ("Smiling-Girl.png") ;

Similarly as above, use the following code to render an SVG image to a PNG image and output the result to
GcWicBitmap class:

C#

using var svg

GcSvgDocument.FromFile ("Smiling-Girl.svg");
var rect = svg.Measure (PointF.Empty);
float factor = 1.5f;
using var bmp = new GcWicBitmap ((int) (rect.Width * factor + 0.95f), (int) (rect.Height
* factor + 0.95f), true, 96f * factor, 96f * factor);
using (var g = bmp.CreateGraphics (Color.White))
{
g.DrawSvg(svg, new PointF(-rect.X, -rect.Y));
}
bmp.SaveAsPng ("Smiling-Girl.png") ;

The output of above code snippets will look like below:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 43

You can also render an SVG image to a PDF document. For more information, refer Images topic in DsPdf docs.

Render Graphics and Text to SVG

Dslmaging lets you render graphics and text on a GcSvgDocument by using ToSvgDocument method of
the GeSvgGraphics class. This class is derived from the GcGraphics class.

By default, the method saves text as paths in an SVG document. However, by setting GcGraphics.DrawTextAsPath
property to false, you can save the text using the standard SVG text elements. While drawing strings or TextLayout
objects using paths ensures that the resulting SVG image looks as expected, rendering them as text elements lets you
select, copy or even search text fragments. However, the text layout depends on the specific fonts. Hence, DsImaging
lets you embed fonts to the output SVG file by setting the boolean property GeSvgGraphics.EmbedFonts to true.
The property is especially useful in rendering text with rare fonts or fonts unavailable on the client machine.

Dslmaging also supports specifying the positions of each individual character within the text element by setting
PreciseCharPositions property of the GeSvgGraphics class.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-pdf/docs/online/Images.html#i-heading-render-svg-image-to-pdf-file

Document Solutions for Imaging 44

brown 11 PRV 4

The quick The quick |

brown fox brown fox
jumps jumps
over the over the
lazy dog. lazy dog.

The code below shows how you can render the same text as path elements and text elements.

C#

var g = new GcSvgGraphics (900, 500);
var tl = g.CreateTextLayout();

var fmt = new TextFormat ()

{
FontName = "Segoe UI",
FontSize = 50,
ForeColor = Color.Green
i
tl.MaxWidth = 300;
tl.Append("The quick brown fox jumps over the lazy dog.", fmt);

// the text at the left is drawn with the text elements
g.DrawTextAsPath = false;

g.DrawTextLayout (tl, new PointF(100£f, 10f));

// the text at the right is drawn with paths
g.DrawTextAsPath = true;

g.DrawTextLayout (tl, new PointF (500f, 10f));

var svg = g.ToSvgDocument () ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 45

svg.Save ("BrownFox.svg", new XmlWriterSettings() { Indent = true });

Limitation

e All text effects of the TextLayout class are not supported when using the SVG text elements. Always check the
output SVG to make sure that the text elements are rendered correctly.

® Vertical text is always drawn using path elements.

® |n GecSvgDocument class, SVG files having embedded fonts are rendered without embedded fonts.

Z Note: You need to apply a license key to use the ToSvgDocument() method. Without a license key, only a few
calls of ToSvgDocument() are allowed, after which an exception is thrown. For more information about applying
license, see Apply License.

Render PDF Page as SVG

Dslmaging lets you save a PDF page or an instance of GcPdfDocument as SVG format using the
SaveAslmageOptions class. The class is used for passing options to the methods used for saving a PDF page in the
SVG format. By default, the class renders strings and TextLayoutObjects as path elements. However, to handle the text
related operations such as select, copy, search etc, you can also render SVG with the text as text elements by setting
the DrawTextAsPath property to false. To handle fonts while working with text, the SaveAsImageOptions class
provides EmbedSvgFonts property to embed font subsets to the output SVG file. The property is set to false by
default which means fonts are not embedded. You can set this property to true to cater to some rare fonts or fonts
that might not be available on the client machine.

The SVG format has the ability to specify positions of each individual characters within the text element. This mode
can be enabled using the PreciseCharPositions properties of the SaveAsimageOptions classes. The
PreciseCharPositions property is set to true by default because the fonts embedded in PDF documents do not often
contain the positioning tables. In some cases, setting character positions also helps when the proposed font is not
available on the client machine and the SVG text element is rendered using a fallback font.

The code below shows how you can render a PDF page as SVG using path elements and using text elements.

C#

var pdfDoc = new GcPdfDocument () ;
using (var fs = new FileStream(@"DOC 2317 MS.pdf", FileMode.Open,
FileAccess.Read, FileShare.Read))
{
pdfDoc.Load (fs) ;
var page = pdfDoc.Pages[0];

// save the SVG with text elements and embedded fonts
page.SaveAsSvg ("DOC 2317 MS 1.svg", null,
options: new SaveAsImageOptions () { Zoom = 2f, DrawSvgTextAsPath =
false, EmbedSvgFonts = true },
new XmlWriterSettings () { Indent = true });

// save the SVG with all text drawn as paths
page.SaveAsSvg ("DOC_ 2317 MS 2.svg", null,

new SaveAsImageOptions () { Zoom = 2f 1},

new XmlWriterSettings () { Indent = true });

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 46

Limitations:

® Vertical text is always drawn using path elements.

® A PDF page saved as an SVG file renders all text fragments drawn with CFF, Type1, and incomplete OpenType
fonts as paths.

® |n GcSvgDocument class, SVG files having embedded fonts are rendered without embedded fonts.
Save SVG to File or Stream

Dslmaging lets you save a newly created SVG document or a modified document as a file or a stream. You can use
the GcSvgDocument.Save method to serialize the new or modified SVG document to a file or a stream.

C#

using var svg = GcSvgDocument.FromFile ("cerdito.svg");

var paint = new SvgPaint (Color.Bisque);

foreach (var elem in svg.GetElementsByClass ("rose"))

{
elem.Fill = paint;

svg.Save ("cerdito2.svg", new XmlWriterSettings () { Indent

true });

File.WriteAllBytes ("cerdito2.svgz", svg.ToSvgz()):;
Limitations

® The supported elements in SVG files are svg, g, defs, style, use, symbol, image, path, circle, ellipse, line,
polygon, polyline, rect, clipPath, marker, pattern, radialGradient, linearGradient, stop, title, metadata and desc.
When rendering SVG content that contains an unsupported element or attribute, the unsupported entity is
ignored. The remainder of the content is rendered as faithfully as possible.

® The image element is only supported if its href attribute is set to a base64-encoded image. File and remote
references are not supported.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 47

Work with WebP Files

WebP is a modern and widespread image file format to showcase high-quality images without affecting website
performance. This format is supported by most of the web browsers.

In DsImaging, you can load WebP images using Load method of the GeBitmap class wherein you can load images
from file, stream and byte arrays. You can also load an image by using constructor of the GcBitmap class. For details
about loading images, see Load Image.

To save an image to the WebP format, you can use SaveAsWebp method of the GeBitmap class.

C#

// Converting a JPG image to WEBP format

using var bmp new GcBitmap () ;

bmp.Load ("image.jpg") ;
bmp.SaveAsWebp ("image.webp", null, false, 50);

Limitations

® Saving an image with transparency in lossy WebP format may result in a relatively large image file.
® Saving an image to lossless WebP format using high quality encoding may result in slow performance.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 48

Process Image

Dslmaging allows you to process images in different ways, such as alter the image size, crop, rotate, flip image, and change image
resolution. It provides various properties and methods, such as Resize, FlipRotate, etc. in the GeBitmap class to handle such type
of processing.

Resize Image
DsImaging lets you reduce or enlarge an image using Resize method of the GeBitmap class. The Resize method takes
InterpolationMode as a parameter to generate the transformed image which is stored as a GeBitmap instance. The interpolation

parameter can be set using the InterpolationMode enumeration which specifies the algorithm used to scale images.

Original Image

Image with reduced size Enlarged image

To resize an image:

1. Initialize the GeBitmap class.

2. Load an image in the GcBitmap instance.

3. Calculate the new height and width of the image for scaling the image.

4. Invoke the Resize method of GcBitmap class with new height, width, and interpolation mode as its parameters.

C#

//Get the image path
var origSmallImagePath = Path.Combine ("Resources", "Images",
"puffins-small.jpg");

//Initialize GcBitmap
GcBitmap origlLargeBmp = new GcBitmap () ;

GcBitmap origSmallBmp = new GcBitmap () ;

//Load image from file

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 49

origLargeBmp.Load (origSmallImagePath) ;
origSmallBmp.Load(origSmallImagePath) ;

//Reduce image

int rwidth = origLargeBmp.PixelWidth - 564;

int rheight = origLargeBmp.PixelHeight - 376;

GcBitmap smallBmp = origlargeBmp.Resize (rwidth, rheight,
InterpolationMode.Linear) ;

//Enlarge image

int ewidth = origSmallBmp.PixelWidth + 156;

int eheight = origSmallBmp.PixelHeight + 54;

GcBitmap largeBmp = origSmallBmp.Resize (ewidth, eheight,
InterpolationMode.Linear) ;

//Save scaled image to file

smallBmp.SaveAsJpeqg ("puffins-scale-small.jpg") ;
largeBmp.SaveAsJpeg ("puffins-scale-large.jpg") ;

Back to Top

Crop Image

Image cropping is usually done to remove the extraneous part of an image in order to improve its framing, to change the aspect
ratio and to isolate a particular object from its background. Dslmaging allows you to crop an image using Clip method of the

GcBitmap class. This method creates new GeBitmap instance that stores the cropped fragment of the original image.

Original Image Cropped Image

To crop an image:

1. Load an image in the GcBitmap instance.

2. Define a rectangle with specified location and size which is to be cropped.

3. Invoke the Clip method of GeBitmap class while specifying the rectangle to separate the required image fragment from the
original image.
C#

//Get the image path
var origImagePath = Path.Combine ("Resources", "Images",
"color-vegetables.jpg");

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap () ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 50

//Load image from file
origBmp.Load (origImagePath) ;

//Crop image
Rectangle clipRec = new Rectangle (661, 327, 508, 878);
GcBitmap clipbmp = origBmp.Clip (clipRec);

//Save cropped image to file
clipbmp.SaveAsJpeg ("color-vegetables-crop.jpg") ;

Back to Top

Rotate and Flip Image

An image can be rotated at different angles and flipped to create its mirror image. Dsimaging supports both rotation and flipping
of an image through FlipRotate method of the GcBitmap class. This method accepts a parameter of type FlipRotateAction
enumeration which specifies flip and rotation transformations. Using FlipRotateAction enumeration, an image can be

rotated clockwise at 90, 180, or 270 degrees and flipped horizontally or vertically. The enumeration also provides an option to flip
an image horizontally with a clockwise rotation of 90 or 270 degrees.

Original Image

Rotated Image Flipped Image

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 51

To rotate an image clockwise at 90 degree:

1. Load an image in a GcBitmap instance.
2. Call the FlipRotate method of GcBitmap class while specifying the FlipRotateAction to produce an image rotated clockwise
at 90 degrees.

C#
//Get the image path

var origImagePath = Path.Combine ("Resources", "Images",
"color-vegetables.jpg") ;

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap () ;

//Load image from file
origBmp.Load (origImagePath) ;

//Rotate image by 90 degree
GcBitmap rotatebmp = origBmp.FlipRotate (FlipRotateAction.Rotate90);

//Save rotated image to file
rotatebmp.SaveAsJpeg ("color-vegetables-rotate.jpg");

To flip an image horizontally:

1. Load an image in a GeBitmap instance.
2. Call the FlipRotate method of GeBitmap class while specifying the FlipRotateAction to flip the pixels around the vertical y-
axis which produces a mirror image.

C#

//Get the image path
var origImagePath = Path.Combine ("Resources", "Images",
"color-vegetables.jpg");

//Initialize GcBitmap

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 52

GcBitmap origBmp = new GcBitmap () ;

//Load image from file
origBmp.Load (origImagePath) ;

//Flip image horizontally
GcBitmap flipbmp = origBmp.FlipRotate (FlipRotateAction.FlipHorizontal);

//Save image to file

flipbmp.SaveAsJpeg ("color-vegetables-flip.jpg");
Back to Top

Clear Image

In DsImaging, you can remove text and graphics from GcBitmap using Clear method of the GeBitmap class. It leaves a specified
color on the surface.

C#

//Initialize GcBitmap with the expected height/width
var origBmp = new GcBitmap (pixelWidth, pixelHeight, true, dpiX, dpiY);

//Clear image

origBmp.Clear (Color.LightBlue) ;

//Save image to file
origBmp.SaveAsdJpeg ("color-vegetables-clear.jpg");

Back to Top

Change Resolution

Resolution of an image refers to the measurement of its output quality. Dslmaging allows you to change the resolution of an
image using SetDpi method of the GcBitmap class. The SetDpi method has following two overloads, SetDpi(float dpi) and
SetDpi (float dpiX, float dpiY). The SetDpi(float dpi) method allows you to change the physical resolution of an image by
accepting a single value for the horizontal and vertical resolution. On the other hand, the SetDpi (float dpiX, float dpiY) method
lets you change the physical resolution of an image by accepting separate values for the horizontal and the vertical resolution.

Additionally, GeBitmap class provides two properties, namely DpiX and DpiY, using which you can fetch the horizontal and vertical
resolution of the bitmap, respectively.

To change the resolution of an image:
1. Load an image from file in the GeBitmap instance.

2. Invoke the SetDpi method of GcBitmap class which accepts the new horizontal and vertical resolution as its parameters.
C#
//Get the image path

var origImagePath = Path.Combine ("Resources", "Images",
"color-vegetables.jpg");

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap () ;

//Load image from file
origBmp.Load (origImagePath) ;

//Change image resolution

int newDpiX = 200, newDpiY = 400;
origBmp.SetDpi (newDpiX, newDpiY);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 53

//Save image to file
origBmp.SaveAsdpeg ("color-vegetables-resolution.jpg") ;

Back to Top

Convert to Indexed Image

Dslmaging supports high quality ARGB images. However, such high quality images take more memory than the indexed images.
Hence, you can convert the ARGB images to indexed images to store them compactly. DsImaging provides two methods to
convert ARGB images to indexed images, which are Tolndexed4bppBitmap and Tolndexed8bppBitmap of the GcBitmap class.
The Tolndexed4bppBitmap method converts an image to 4 bpp (bits per pixel) indexed image which returns an instance of
the Indexed4bppBitmap class. Similarly, ToIndexed8bppBitmap method converts an image to 8 bpp indexed image which
returns an instance of Indexed8bppBitmap class. The Tolndexed4bppBitmap and Tolndexed8bppBitmap methods can take any
custom palette as a parameter while converting an image to the indexed image.

Original Image Indexed Image

To convert an image to a 4bpp indexed image using the octree color palette based on the Octree color quantization algorithm:

1. Load an image in the GeBitmap instance.

2. Generate the Octree color palette by using GenerateOctreePalette method of GcBitmap class.

3. Convert the image to 4 bpp using Tolndexed4bppBitmap method of GcBitmap class and pass the octree color palette
as its parameter.

4. Save the indexed image using the SaveAsJpeg method.

C#

//Load an image to generate a custom palette
GcBitmap bmpSrc = new GcBitmap () ;
bmpSrc.Load ("Images/peacock small.jpg");

//Generate color palette using Octree quantizer and dithering
var pal = bmpSrc.GenerateOctreePalette (16);

//Use octree palette generated above as a custom palette to create an Indexed image
Indexed4bppBitmap ind = bmpSrc.ToIndexed4bppBitmap (pal, DitheringMethod.FloydSteinberq);

ind.ToGcBitmap () .SaveAsJpeg ("Images/IndexedPeacockpall.jpg") ;

Back to Top

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 54

Combine Images

DsImaging allows you to combine multiple images with different formats to generate a new image. You can combine multiple
images and place them on one GcBitmap using BitBIt method of the GcBitmap class. The BitBlt method performs a bit-block
transfer of the color data corresponding to pixels from the specified source bitmap into the current bitmap.

To combine multiple images, say four images, with different formats into a new image:

. Create GcBitmap instances for each image.

. Load an image in each GcBitmap instance.

. Initialize a new GcBitmap instance with specified width and height, in pixel, to combine all the four images into one.

. Place all the images one by one with specified coordinates on this GcBitmap by performing bit-block transfer using BitBIt
method of the GcBitmap class.

C#

A wp

//Get the images paths

var jpglmagePath = Path.Combine ("Resources", "Images",
"gray-puffins-small.jpg");

var pnglmagePath = Path.Combine ("Resources", "Images",
"gray-dog-small.png") ;

var bmpImagePath = Path.Combine ("Resources", "Images",
"color-goldfish-small.bmp") ;

var gifImagePath = Path.Combine ("Resources", "Images",
"peacock-small.gif");

//Initialize GcBitmap instances and load an image in each instance
GcBitmap jpgBmp = new GcBitmap () s

jpgBmp.Load (jpgImagePath) ;

jpgBmp.Opaque = true;

GcBitmap pngBmp = new GcBitmap () ;
pngBmp.Load (pngImagePath) ;
pngBmp.Opaque = true;

GcBitmap bmpBmp = new GcBitmap () ;
bmpBmp . Load (bmpImagePath) ;
bmpBmp .Opaque = true;

GcBitmap gifBmp = new GcBitmap () ;
gifBmp.Load (gifImagePath) ;
gifBmp.Opaque = true;

//Concatenate the images with different formats to
//generate a new image

int w = jpgBmp.PixelWidth + 1;

int h = jpgBmp.PixelHeight + 1;

GcBitmap outBmp = new GcBitmap(w * 2, h * 2, true);
outBmp.BitBlt (jpgBmp, 0, 0);

outBmp.BitBlt (pngBmp, w, 0
outBmp.BitBlt (bmpBmp, O,
outBmp.BitBlt (gifBmp, w,

//Save concatenated image to file
outBmp.SaveAsdpeg ("color-concatenate.jpg") ;

Back to Top

Compositing Images

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 55

Compositing defines various ways in which two bitmaps can be combined into a single image. Dsimaging allows you to composite
images using Porter-Duff compositing algorithm by providing CompositeAndBlend method in the GeBitmap class. The method
takes values from CompositeMode enumeration as a parameter to generate the resultant image by compositing the source and
destination bitmap. There are 13 composite modes which can be implemented through the CompositeMode enumeration as
displayed below:

Source Image Destination Image

Destination
Over

ITElg

Source In Destination In Source Out Destination Out Source Atop

: = -
- T -
' i [

XOR Lighter

18] F

o -

Clear Copy Destination Source Over

Destination
Atop

To perform Porter-Duff compositing on two bitmaps using DestinationOver composite mode :

1. Create GcBitmap instances to load the source and destination images.
2. Invoke the CompositeAndBlend method of GeBitmap class, and pass the DestinationOver composite mode as the
parameter to combine the two images.

C#

//Load the two images to be combined
using (var dst = new GcBitmap (@"in\dst.png"))
using (var src = new GcBitmap (@"in\src.png"))
//Combine the two images using various compositing and blending modes
{
var tmp = dst.Clone();
tmp.CompositeAndBlend(src, 0, 0, CompositeMode.DestinationOver) ;
tmp.SaveAsPng (@"out\res DestinationOver.png");

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 56

Back to Top

Blend Modes

Blend mode determines how the colors of the target image and the colors of graphic primitives or images that are drawn on the
target are mixed (blended) with each other. The BlendMode enumeration is used to specify the blend mode. In DsImaging, the
blend mode can be specified in two ways:

® By setting the BlendMode property on the current instance of the GeBitmapGraphics class or directly on the
GcBitmap.Renderer (the two properties are associated with the same value internally). In this case the specified blend
mode will affect all subsequent drawing on the bitmap until changed to a different value.

® By specifying a blend mode value as a parameter of the CompositeAndBlend method of GcBitmap. In this case the
specified blend mode will only apply to the current method call. This approach is preferable if you only need to overlay two
images, and also provides other useful options.

The following example shows how the BlendMode property can be used to affect all drawing on a GecBitmapGraphics:

C#

// Use the spectrum image as the background to draw on:
using var bmp = new GcBitmap ("spectrum-pastel-500x500.png") ;
using var g = bmp.CreateGraphics();

// Draw text on the spectrum background using a few blend modes:
var rc = new RectangleF (0, 0, bmp.PixelWidth / 2, bmp.PixelHeight / 2);
var tf = new TextFormat () { FontSize = 24, FontBold = true, ForeColor = Color.Gray };
var modes = new BlendMode/[]

{ BlendMode.Multiply, BlendMode.Screen, BlendMode.ColorBurn, BlendMode.ColorDodge };
var pts = new PointF[]

{ new PointF (0, 0), new PointF (250, 0), new PointF(-250, 250), new PointF (250, 0) };
int 1 = 0;
foreach (var mode in modes)
{

g.BlendMode = mode;

rc.Offset (pts[i++]);

g.DrawString ($"This text is drawn using {g.BlendMode} blend mode.",

tf, rc, TextAlignment.Center, ParagraphAlignment.Center);

var rcb = rc;

rcb.Inflate (-2, -2);

g.DrawRectangle (rcb, Color.Red);
}
bmp.SaveAsPng ("blend-modes.png") ;
}

The output of the above code will look like below:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 57

This te
drawn |
ColorD
plend n

To use the CompositeAndBlend method, you need to create two instances of GeBitmap. One will be the target of the operation
containing the backdrop on which to draw. The second bitmap (source) should contain the image that will be blended with the
target. You will also need to also specify the CompositeMode and other parameters. The following code shows an example:

C#

//Load the two images to be combined
GcBitmap ducky = new GcBitmap ("Images/ducky.png");
GcBitmap spectrum = new GcBitmap ("Images/spectrum.png") ;

//Combine the two images using various compositing and blending modes

spectrum.CompositeAndBlend (ducky, 0, 0, CompositeMode.SourceOver, BlendMode.ColorDodge) ;
spectrum.SaveAsPng ("BlendDucky.png") ;

Source Image Destination Image

Normal Multiply Screen Overlay

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 58

<l <N !

Darken Lighten Color Dodge ColorBurn

Hard Light Soft Light Difference Exclusion

Hue

Support for ICC Profiles

Saturation Color Luminosity

o

ICC profile is a color management standard for specifying the color attributes of imaging devices. It ensures that the colors of an
image are correctly displayed over different devices. In Dsimaging library, the ICC profile is handled as binary data and can be
extracted or embedded using lIccProfileData property of GeBitmap class. The ICC profile is supported for various image formats
such as, JPEG, PNG, TIFF and GIF.

To extract ICC profile of an image and embed it to another image:

1. Load an image in the GcBitmap instance.

2. Get the ICC profile of an image from the lccProfileData property of GecBitmap class.

3. Load another image in the GcBitmap instance to which you want to apply the ICC profile.

4. Assign the ICC profile of first image to this image using the IccProfileData property of GcBitmap class.

C#

//Get the ICCProfileData for an image and set it to another image

GcBitmap bmp = new GecBitmap () ;

bmp.Load ("Images/peacock-small.jpg") ;

var peacockICC_Data = bmp.IccProfileData;

Console.WriteLine ($"ICC Profile of peacock image consists of {bmp.IccProfileData.Length}
bytes") ;

bmp.Load ("Images/puffins-small.jpg") ;

bmp.IccProfileData = peacockICC Data;

Console.WriteLine ($"ICC Profile of peacock image copied to puffins image which now
consists of {bmp.IccProfileData.Length} bytes");

For more information about processing images using DsImaging, see DsImaging sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-imaging/demos/basics/miscellaneous/blending-modes/code-cs

Document Solutions for Imaging 59

Z] Note: For rendering large or complex text and graphics, you can use Skia library. For more information about the library and
its usage, see Render using Skia Library.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 60

Apply Effects

Advanced imaging effects are helpful in a lot of scenarios such as low-color depth environment, image transmission,
medical imaging, remote-sensing, acoustic imagery and forensic surveillance imagery.

Dslmaging library offers great flexibility while working with these advanced effects which includes dithering,
thresholding, gray scaling, Gaussian blur, and various RGB effects. DsImaging provides the ApplyEffect method in
the GeBitmap class which takes the instance of class representing the effect as a parameter. These effects and the
corresponding classes are described in detail in the table below. Please note that the ApplyEffect method applies a
graphic effect to an image or a portion in-place, which means it stores the result back in the existing Bitmap object
instead of storing it in a new instance.

Grayscale BrightnessContrastEffect

TemperatureAndTintEffect Gaussian Blur

Thresholding Dithering

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

Effects

Dithering

Thresholding

Grayscaling

Gaussian Blur

RGB effects

Classes

DitheringEffect

BradleyThresholdingEffect
OtsuThresholdingEffect

GrayscaleEffect

GaussianBlurEffect

OpacityEffect
HueRotationEffect
SaturationEffect
SepiaEffect
TemperatureAndTintEffect
LuminanceToAlphaEffect
BrightnessContrastEffect

GammaCorrectionEffect

To apply a graphic effect, say dithering, on an image:

© 2024 MESCIUS inc. All rights reserved.

Descriptions

Allows you to apply dithering effect

through 9 different algorithms
which are provided by the
DitheringMethod enumeration.

Atkinson

Burks
FloydSteinberg
JarvisJudiceNinke
Sierra

SierralLite

Stucki
TwoRowsSierra
NoDithering

Allows you to apply two types of
thresholding effects, Bradley's
thresholding and Otsu's
thresholding, through
BradleyThresholdingEffect and
OtsuThresholdingEffect class
respectively.

Allows you to apply grayscale
effect as per the three grayscale
standards provided by the
GrayscaleStandard enumeration.

e BT709
® BT601
e BT2100

Allows you to create a blur effect
based on the Gaussian function
over the entire input image or a
part of the image using the Get

method of GaussianBlurEffect class.

Allows you to apply various RGB
effects using their corresponding
classes mentioned in the column
on left hand side.

Document Solutions for Imaging 62

1. Initialize the GcBitmap class.

2. Invoke Get method of the DitheringEffect class to define the dithering effect that specifies the method to be
used for dithering.

3. Apply dithering effect to an image using the ApplyEffect method which accepts the defined dithering effect as
its parameter.

C#

var imagePath = Path.Combine ("Resources", "Images",

"color-vegetables-small.jpg");

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap (imagePath,
new Rectangle (50, 50, 1024, 1024));

//Rpply Dithering effect FloydSteinberg
origBmp.ApplyEffect (DitheringEffect.Get (DitheringMethod.FloydSteinbergqg),
new Rectangle (0, 0, 1024, 1024));

//Save Dithering effect image
origBmp.SaveAsJpeg ("Dithering.jpg");

Similarly, you can apply any other effect on images as mentioned in the table above.

Dslmaging library also provides IsBlackAndWhite and IsGrayscale methods in the GeBitmap class to check whether
the image is already black and white or grayscale. Both methods work very quickly, as GcBitmap makes it easy to
convert a colorful image to a grayscale or bi-level black and white image. These methods also skip unnecessary
conversions if the original image is already grayscale or black and white. However, if the image is colorful, these
methods just check a few pixels and return the result immediately.

The IsBlackAndWhite method checks whether all the pixels of the image are either opaque black (OxFFO00000) or
opaque white (OxFFFFFFFF). Transparent and semi-transparent pixels are neither black nor white.

The IsGrayscale method checks whether all pixels of the image are shades of gray, i.e., their alpha channel is set to
OxFF (fully opaque) and their red, green, and blue channels have the same value.

Refer to the following example code in order to check whether the image is already black and white or grayscale:

C#

// Initialize GcBitmap and load the image.

using var bmp = new GcBitmap ("grcode.png") ;

// Check if black and white is applied.
if (bmp.IsBlackAndWhite())
{

Console.WriteLine ("The image is black and white.");

// Check if grayscale is applied.
if (bmp.IsGrayscale())
{
Console.WriteLine ("The image is grayscale.");

}
Back to Top

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 63

For more information about implementation of different effects using DsImaging, see DsImaging sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-imaging/demos/basics/effects/dithering1/code-cs

Document Solutions for Imaging 64

Layouts

Dslmaging provides LayoutRect and other related classes in the GrapeCity.Documents.Layout namespace to place
multiple elements on a PDF page or image without having to calculate positions of each element relative to other
ones.

The LayoutRect and other related classes implement the flat layout model. There are no chains, barriers, guidelines,
biases, or other complications. Certain features of the layout model are:

Rectangles can be rotated by a multiple of 90 degrees.

Constraints can reference anchor points from other views (with different transformation matrices).

Rectangle sides can be bound to arbitrary contours.

Views can be nested, and the inner view's transformation is automatically recalculated when the outer view's
transformation changes.

LayoutHost is the main object, which defines the origin of the coordinate system. Also, this object performs layout
when all other objects are prepared and linked. LayoutHost can create views. LayoutView defines a rectangular region
with some width, height, and transformation, and the units of all sizes and coordinates are floats and can be of
arbitrary dimension.

A LayoutHost can create multiple LayoutViews with different sizes and transformations, and each LayoutView can
create multiple LayoutRects. A LayoutRect is a rectangle whose sides are parallel to the LayoutView sides. LayoutRect
is defined by four points: PO, P1, P2, and P3.

PO P1
|] |]
]]
P2 P3

The layout engine calculates the exact positions of the PO, P1, and P2 points for each LayoutRect of each LayoutView
within a LayoutHost. The size and position of a LayoutRect can be determined if some of the following parameters are
known: Width, Height, AspectRatio, Angle (as a multiple of 90 degrees), Left, Top, Right, Bottom, HorizontalCenter,
VerticalCenter. The Width, Height and AspectRatio parameters are assigned directly; however, other parameters are
usually defined as an offset or delta from the LayoutView, other rectangles, or the special anchor points.

The transformation matrix is Matrix from the GrapeCity.Documents.Common namespace. It has double precision vs.
single precision Matrix3x2 from System.Numerics. The Matrix can easily be converted to Matrix3x2, or it can be
multiplied by a Matrix3x2.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 65

Refer to the following example code to draw a simple layout:

C#

// Initialize LayoutHost. This defines the origin of the coordinate system.
var host = new LayoutHost();

// Create LayoutView. This defines a rectangular region with some width, height, and
transformation.
LayoutView view = host.CreateView (500, 300, Matrix.Identity);

// Create lists for blue and green rectangles.
var bluelList = new List<LayoutRect>();

var greenList = new List<LayoutRect>();

// Create LayoutRect. LayoutRect is a rectangle whose sides are parallel to the owner
LayoutView sides.
LayoutRect rect = view.CreateRect();

// Set a constraint on the rotation angle of the LayoutRect.
rect.SetAngle (null, 90);

// Set width, height, and center point.

rect.SetWidth (120) ;

rect.SetHeight (80);

rect.SetHorizontalCenter (null, AnchorParam.VerticalCenter);
rect.SetVerticalCenter (null, AnchorParam.HorizontalCenter);

// Add the LayoutRect to the blue list.
bluelList.Add(rect) ;

// Add a green LayoutRect to the blue LayoutRect.
AddGreenRect (rect) ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 66

// Add a tiny green rectangle at the bottom left corner of the blue rectangle.
void AddGreenRect (LayoutRect r0)
{

var rl = view.CreateRect();

rl.SetWidth (r0, AnchorParam.Width, 0, 0.125f);

rl.SetHeight (r0, AnchorParam.Height, 0, 0.125f);

rl.AnchorBottomLeft (r0O, 5, 5);

greenList.Add(rl);

// Create two more blue rectangles and place them at different places in the
LayoutView.

// Add green rectangles to the blue rectangles.

rect = view.CreateRect();

rect.AnchorTopLeft (null, 0, 0, 120, 80);

bluelist.Add (rect);

AddGreenRect (rect) ;

rect = view.CreateRect();
rect.AnchorBottomRight (null, 0, 0, 120, 80);
bluelist.Add (rect);

AddGreenRect (rect) ;

// Calculate all rectangle coordinates based on the constraints provided.
host.PerformLayout () ;

// Draw the rectangles on a bitmap.

using var bmp = new GcBitmap (540, 340, true);
using (var g = bmp.CreateGraphics(Color.White))
{

var pen = new Pen(Color.Coral, 2);

// Set the transformation matrix of the LayoutView when creating the view.
var m = Matrix3x2.CreateTranslation (20, 20);
g.Transform = view.Transform.Multiply (m);

// Draw a rectangle with the corresponding values of the LayoutView.
g.DrawRectangle (view.AsRectF (), pen);

// Draw blue rectangles.

pen.Color = Color.CornflowerBlue;

for (int i = 0; 1 < bluelist.Count; i++)

{
rect = bluelist[i];
g.Transform = rect.Transform.Multiply(m);
g.DrawRectangle (rect.AsRectF (), pen);

// Draw green rectangles.
pen.Color = Color.LightGreen;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

for (int i = 0; i1 < greenList.Count; i++)

{
rect = greenList[i];
g.Transform = rect.Transform.Multiply (m);
g.DrawRectangle (rect.AsRectF (), pen);

// Save the image.
bmp.SaveAsPng ("testl.png");

Simple Position Constraints

Simple position constraints change one of the following LayoutRect parameters: Left, Right, Top, Bottom,
HorizontalCenter, and VerticalCenter.

Refer to the following example code to draw a layout with simple position constraints:

C#

// Initialize LayoutHost. This defines the origin of the coordinate system.

var host = new LayoutHost();

// Create LayoutView. This defines a rectangular region with width and height.

LayoutView view = host.CreateView (600, 300);

// Create a left vertical line by setting AnchorParam to left.
var bL = view.CreateRect():;

bL.AnchorVerticalLine (null);

bL.SetLeft (null, AnchorParam.Left);

// Create a right vertical line by setting AnchorParam to right.

var bR = view.CreateRect():;

© 2024 MESCIUS inc. All rights reserved.

67

Document Solutions for Imaging 68

bR.AnchorVerticalLine (null);
bR.SetRight (null, AnchorParam.Right) ;

// Create a blue rectangle and set its AnchorParam.
var rl = view.CreateRect();

rl.SetTop(null, AnchorParam.VerticalCenter);
rl.SetWidth (120);

rl.SetHeight (80) ;

rl.SetLeft (bL, AnchorParam.Right, 20);

// Create a green rectangle (rotated 270 degrees or 90 degrees counterclockwise) and
set its AnchorParam.

var r2 = view.CreateRect();

r2.SetAngle (rl, 270);

r2.SetLeft (rl, AnchorParam.Bottom);

r2.SetWidth (200) ;

r2.SetHeight (80) ;

r2.SetTop(rl, AnchorParam.Right, 20);

// Create a violet rectangle and set its AnchorParam.
var r3 = view.CreateRect();

r3.SetAngle (rl, 0);

r3.S5etBottom(rl, AnchorParam.Top);

r3.SetHeight (80) ;

r3.SetLeft (r2, AnchorParam.Bottom, 20);
r3.SetRight (bR, AnchorParam.Left, -20);

// Calculate all rectangle coordinates based on the constraints provided.
host.PerformLayout () ;

// Draw the rectangles on a bitmap.

using var bmp = new GcBitmap ((int) (view.Width + 40), (int) (view.Height + 40), true);
using var g = bmp.CreateGraphics (Color.White);

var m = Matrix3x2.CreateTranslation (20, 20);

// Draw the vertical lines and rectangles.

DrawRect (bL, Color.Coral);

DrawRect (bR, Color.Coral);

DrawRect (rl, Color.CornflowerBlue);

DrawRect (r2, Color.Green);

DrawRect (r3, Color.Violet);

void DrawRect (LayoutRect r, Color c)

{
g.Transform = r.Transform.Multiply (m);
g.DrawRectangle (r.AsRectF (), new Pen(c, 2));

// Save the image.
bmp.SaveAsPng ("test2.png") ;

Chained Position Constraints

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 69

Chained position constraints set the parameters of a LayoutRect to fill the whole width or height of some area with
multiple rectangles having different proportional sizes (measured in stars). The widths or heights of the rectangles will
be proportional to their weights (number of stars). The SetLeftAndOpposite and SetBottomAndOpposite methods
are used to set the chained constraints. These methods create two constraints at once.

Refer to the following example code to draw a layout with chained position constraints:

C#

// Initialize LayoutHost. This defines the origin of the coordinate system.

var host = new LayoutHost();

// Create LayoutView. This defines a rectangular region with some width and height.
LayoutView view = host.CreateView (900, 300);

// Create a left vertical line by setting AnchorParam to left.
var bL = view.CreateRect();

bL.AnchorVerticalLine (null);

bL.SetLeft (null, AnchorParam.Left);

// Create a right vertical line by setting AnchorParam to right.
var bR = view.CreateRect();

bR.AnchorVerticalLine (null) ;

bR.SetRight (null, AnchorParam.Right);

// Create blue, green, and violet rectangles.
var rl = view.CreateRect():;

rl.AnchorTopBottom(null, 100, 100);

var r2 = view.CreateRect():;
r2.AnchorTopBottom (null, 100, 100);

var r3 = view.CreateRect();
r3.AnchorTopBottom(null, 100, 100);

var r4 = view.CreateRect();
r4.AnchorTopBottom(null, 100, 100);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 70

var ro = view.CreateRect();
r6.AnchorTopBottom (null, 100, 100);

// Create a green rectangle rotated 90 degrees.
var r5 = view.CreateRect();

r5.SetAngle (null, 90);

r5.SetLeft (null, AnchorParam.Top, 20);
r5.5etRight (null, AnchorParam.Bottom, -20);

// Create a chain of rectangles by setting the AnchorParam. The SetLeftAndOpposite
and SetBottomAndOpposite methods are used to set chained position constraints.
rl.SetLeft (bL, AnchorParam.Right, 20);

r2.SetLeftAndOpposite(rl, AnchorParam.Right, 20);

r3.SetLeftAndOpposite (r2, AnchorParam.Right, 20);

r4.SetLeftAndOpposite (r3, AnchorParam.Right, 20);

r5.5etBottomAndOpposite (r4, AnchorParam.Right, -20);

r6.SetLeftAndOpposite (r5, AnchorParam.Top, 20);

r6.SetRight (bR, AnchorParam.Left, -20);

// Set the star and fixed widths.
rl.SetStarWidth(2);
r2.SetStarWidth(4);
r3.S5etWidth (50) ;
r4.SetStarWidth (2) ;
r6.SetStarWidth (2) ;

// Set the star height as this rectangle is rotated.
r5.5etStarHeight (4) ;

// Calculate all rectangle coordinates based on the constraints provided.
host.PerformLayout () ;

// Draw the rectangles on a bitmap.

using var bmp = new GcBitmap ((int) (view.Width + 40), (int) (view.Height + 40), true);
using var g = bmp.CreateGraphics (Color.White);

var m = Matrix3x2.CreateTranslation (20, 20);

// Draw the vertical lines and rectangles.
DrawRect (bL, Color.Coral);

DrawRect (bR, Color.Coral);
DrawRect (rl, Color.CornflowerBlue);
DrawRect (r2, Color.Green);

DrawRect (r3, Color.Violet);
DrawRect (r4, Color.CornflowerBlue);
DrawRect (r5, Color.Green);

DrawRect (r6, Color.CornflowerBlue);
void DrawRect (LayoutRect r, Color c)
{

g.Transform = r.Transform.Multiply (m);
g.DrawRectangle (r.AsRectF (), new Pen(c, 2));

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 71

// Save the image.
bmp.SaveAsPng ("test3.png") ;

Minimum or Maximum Position Constraints

Min/Max position constraints bind a single LayoutRect parameter to one or several other LayoutRects.
The AppendMinTop method is used in the following case to define the minimum top gap between the LayoutRect
and other LayoutRects.

Refer to the following example code to draw a layout with minimum position constraints:

C#

// Initialize LayoutHost. This defines the origin of the coordinate system.
var host = new LayoutHost();

// Create LayoutView. This defines a rectangular region with some width and height.
LayoutView view = host.CreateView (600, 400);

// Create an outer rectangle.
var rOuter = view.CreateRect();

rOuter.AnchorExact (null) ;
// Create an inner rectangle.

var rInner = view.CreateRect ()
rInner.AnchorBottomLeftRight (rOuter, 50, 50, 50);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 72

// Create rectangles.

var rl = view.CreateRect():;
rl.AnchorTopLeft (rOuter, 20, 50, 200, 60);
var r2 = view.CreateRect();

r2.AnchorTopRight (rOuter, 50, 50, 40, 40);

// Set the position of the inner rectangle according to the other rectangles.
rInner.AppendMinTop (rOuter, AnchorParam.Top, 50);

rInner.AppendMinTop (rl, AnchorParam.Bottom, 20);

rInner.AppendMinTop (r2, AnchorParam.Bottom, 20);

// Calculate all rectangle coordinates based on the constraints provided.

host.PerformLayout () ;

// Draw the rectangles on a bitmap.

using var bmp = new GcBitmap ((int) (view.Width + 40), (int) (view.Height + 40), true);
using var g = bmp.CreateGraphics (Color.White);

var m = Matrix3x2.CreateTranslation (20, 20);

// Draw the rectangles.
DrawRect (rOuter, Color.Coral);
DrawRect (rInner, Color.CornflowerBlue);
DrawRect (rl, Color.Green);

DrawRect (r2, Color.Green);

void DrawRect (LayoutRect r, Color c)
{

g.Transform = r.Transform.Multiply (m);
g.DrawRectangle (r.AsRectF (), new Pen(c, 2));

// Save the image.
bmp.SaveAsPng ("test4.png") ;

Anchor Points

Anchor points set the parameters of a LayoutRect relative to a LayoutView, other LayoutRects, or the special anchor
points. The anchor points can be created with the CreatePoint method of a LayoutView or LayoutRect object.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

Refer to the following example code to draw a layout with anchor points:

C#

// Initialize LayoutHost.

var host = new LayoutHost();

This defines the origin of the coordinate system.

73

// Create LayoutView. This defines a rectangular region with some width and height.

LayoutView view = host.CreateView (600,

// Create main rectangle.

var rMain = view.CreateRect () ;

rMain.AnchorExact (null) ;

// Create anchor points.

var apl = rMain.CreatePoint
var ap2 = rMain.CreatePoint
var ap3 = rMain.CreatePoint
var ap4 = rMain.CreatePoint

// Create four rectangles and position them as per the anchor points defined.

var rl = view.CreateRect():;

AnchorCenter (rl, apl);

var r2 = view.CreateRect () ;

AnchorCenter (r2, ap2);

var r3 = view.CreateRect():;

AnchorCenter (r3, ap3);

© 2024 MESCIUS inc. All rights reserved.

S~ N
w w w w
~ ~

~

1£ / 3
1f / 3
2f / 3
2f / 3

)
)
)
)

400) ;

’

’

’

’

Document Solutions for Imaging 74

var r4 = view.CreateRect();

AnchorCenter (r4, ap4):

void AnchorCenter (LayoutRect r, AnchorPoint ap)
{

.SetHorizontalCenter (ap);
.SetVerticalCenter (ap) ;

.SetWidth (20) ;

.SetHeight (20) ;

E B B B

// Calculate all rectangle coordinates based on the constraints provided.
host.PerformLayout () ;

// Draw the rectangles on a bitmap.

using var bmp = new GcBitmap ((int) (view.Width + 40), (int) (view.Height + 40), true);
using var g = bmp.CreateGraphics (Color.White);

var m = Matrix3x2.CreateTranslation (20, 20);

// Draw the rectangles.
DrawRect (rMain, Color.Coral);

DrawRect Color.CornflowerBlue

’
’

DrawRect Color.CornflowerBlue

(rl)
(r2,)
DrawRect (r3, Color.CornflowerBlue) ;
(rd,)

’

DrawRect Color.CornflowerBlue
void DrawRect (LayoutRect r, Color c)
{

g.Transform = r.Transform.Multiply (m) ;
g.DrawRectangle (r.AsRectF (), new Pen(c, 2));

// Save the image.
bmp.SaveAsPng ("test5.png") ;

Constraints based on other LayoutView

The LayoutRect parameters cannot be bound to a LayoutRect from another LayoutView. However, it is possible to
bind parameters to any anchor point within the same LayoutHost.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

Refer to the following example code to draw a layout circumscribed in a layout from another LayoutView:

C#

// Initialize LayoutHost. This defines the origin of the coordinate system.
var host = new LayoutHost();

//Create rotation.

const double DegToRad = Math.PI / 180;

var ml = Matrix.CreateRotation (DegToRad * 30);
ml = ml.Translate (190, -=-50);

// Create first view and rectangle.

var viewl = host.CreateView (10, 10, ml);
var rcl = viewl.CreateRect():;
rcl.AnchorTopLeft (null, 30, 30, 300, 200);

// Create second view and rectangle.

var m2 = Matrix.CreateRotation (DegToRad * -20);
var view2 = host.CreateView (10, 10, m2);

var rc2 = view2.CreateRect () ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

// Create anchor points.

var apl = rcl.CreatePoint (0, 0);
var ap2 = rcl.CreatePoint (1, 0);
var ap3 = rcl.CreatePoint(l, 1);
var ap4 = rcl.CreatePoint (0, 1);

// Add constraints relative to the anchor points.
rc2.SetTop (apl, -20);

rc2.SetBottom (ap3, 20);

rc2.SetLeft (ap4, -20);

rc2.SetRight (ap2, 20);

// Calculate all rectangle coordinates based on the constraints provided.
host.PerformLayout () ;

// Draw the rectangles and ellipses on a bitmap.
using var bmp = new GcBitmap (600, 550, true);
using var g = bmp.CreateGraphics (Color.White);
var m = Matrix3x2.CreateTranslation (20, 20);

// Draw the rectangles and ellipses.
DrawRect (rcl, Color.CornflowerBlue);
DrawRect (rc2, Color.Green);

DrawPoint (apl

’

’

) .

DrawPoint (ap2) ;

DrawPoint (ap3)
)

DrawPoint (ap4) ;
void DrawRect (LayoutRect r, Color c)
{
g.Transform = r.Transform.Multiply (m) ;
g.DrawRectangle (r.AsRectF (), new Pen(c, 2));
}
void DrawPoint (AnchorPoint ap)

{

g.Transform = ap.Transform.Multiply(m);

g.DrawEllipse (new RectangleF (-5, -5, 10, 10), new Pen(Color.Coral, 2));

// Save the image.
bmp.SaveAsPng ("test6.png") ;

Dependent Views and Transformations

76

The hierarchy of LayoutViews is not necessarily flat within the same LayoutHost. Some views can be nested in other

views. When the transformation matrix of the parent LayoutView is updated, all child view transformations are

recalculated.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

C#

// Initialize LayoutHost. This defines the origin of the coordinate system.

var host = new LayoutHost();

// Create first view and rectangle.
var viewl = host.CreateView (240, 300);
var rcl = viewl.CreateRect();

rcl.AnchorExact (null);

// Create second view and rectangle.
var view2 = host.CreateView (100, 150);
var rc?2 = view2.CreateRect();
rc2.AnchorExact (null) ;

// Create third view and rectangle.
var view3 = host.CreateView (70, 50);
var rc3 = view3.CreateRect();
rc3.AnchorExact (null) ;

//Create rotation.

const double DegToRad = Math.PI / 180;

var m2 = Matrix.CreateRotation (DegToRad * 45);
view2.SetRelativeTransform(viewl, m2.Translate (120, -100));
var m3 = Matrix.CreateRotation (DegToRad * -20);
view3.SetRelativeTransform(view2, m3.Translate(-23, 90));

// Calculate all rectangle coordinates based on the constraints provided.

host.PerformLayout () ;
// Draw the rectangles on a bitmap.
using var bmp = new GcBitmap (850, 350, true);

using var g = bmp.CreateGraphics (Color.White);

// Draw the first set of rectangles according to the first transformation matrix.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 78

var m = Matrix3x2.CreateTranslation (20, 20);
DrawRect (rcl, Color.CornflowerBlue);
DrawRect (rc2, Color.Orange);

DrawRect (rc3, Color.Violet);

// Draw the second set of rectangles according to the second transformation matrix.
viewl.Transform = Matrix.CreateTranslation (350, 50).Scale(0.7) .Rotate (DegToRad * 20);
host.PerformLayout () ;

DrawRect (rcl, Color.CornflowerBlue);

DrawRect (rc2, Color.Orange);

DrawRect (rc3, Color.Violet);

// Draw the third set of rectangles according to the third transformation matrix.
viewl.Transform = Matrix.CreateTranslation (520, 200).Scale(0.8) .Rotate (DegToRad * -
70) ;
host.PerformLayout () ;
DrawRect (rcl, Color.CornflowerBlue);
DrawRect (rc2, Color.Orange);
DrawRect (rc3, Color.Violet);
void DrawRect (LayoutRect r, Color c)
{
g.Transform = r.Transform.Multiply (m) ;
g.DrawRectangle (r.AsRectF (), new Pen(c, 2));

// Save the image.
bmp.SaveAsPng ("test7.png") ;

Contours

Contour is a closed figure drawn through anchor points. One side of a LayoutRect can be bound to one or several
contours. From LayoutRect's point of view, contours consist of the outer area, the inner area, and the border area.
Rectangles can be bound to positions where one area changes to another. The CreateContour method of LayoutView
class creates an object of Contour class, which is used to draw a contour.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

79

C#

// Initialize LayoutHost. This defines the origin of the coordinate system.

var host = new LayoutHost();

// Create LayoutView. This defines a rectangular region with some width and height.

LayoutView view = host.CreateView (800, 400);

// Create a contour.

var contour = view.CreateContour () ;
contour.AddPoints (new AnchorPoint/[]

{

400, 0),

, 600, 400),
, 400, 200),
200, 400)

view.CreatePoint (0,

~

view.CreatePoint (0,

4

0
0
0
0

o O O O

~

(
(
view.CreatePoint (
view.CreatePoint (O,

1)

// Create first row of rectangles.
var rcll = view.CreateRect();
rcll.AnchorLeftTopBottom(null, 0, 20, 310);

rcll.AppendMaxRight (contour, ContourPosition.FirstInOutside);

var rcl2 = view.CreateRect();
rcl2.AnchorRightTopBottom(null, 0, 20, 310);
rcl2.AppendMinLeft (contour, ContourPosition.FirstInOutside);

// Create second row of rectangles.
var rc2l = view.CreateRect();
rc2l.AnchorLeftTopBottom(null, 0, 120, 210);

rc2l.AppendMaxRight (contour, ContourPosition.FirstInOutside);

var rc22 = view.CreateRect();

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

rc22.AnchorTopBottom (null, 120, 210);
rc22.SetlLeft (rc2l, AnchorParam.Right);
rc22.AppendMaxRight (contour, ContourPosition.
var rc23 = view.CreateRect () ;
rc23.AnchorTopBottom (null, 120, 210);
rc23.SetlLeft (rc22, AnchorParam.Right);
rc23.AppendMaxRight (contour, ContourPosition.
var rc24 = view.CreateRect () ;
rc24.AnchorTopBottom (null, 120, 210);
rc24.SetlLeft (rc23, AnchorParam.Right);
rc24.AppendMaxRight (contour, ContourPosition.
var rc25 = view.CreateRect () ;

rc25.8etLeft (rc24, AnchorParam.Right);
rc25.AnchorRightTopBottom (null, 0, 120, 210);

// Create third row of rectangles.
var rc3l = view.CreateRect();
rc3l.AnchorRightTopBottom (null, 0, 220, 110);

FirstInInside);

NextOutInside) ;

NextOutOutside) ;

rc31l.AppendMinLeft (contour, ContourPosition.FirstInOutside);

var rc32 = view.CreateRect();
rc32.AnchorTopBottom (null, 220, 110);
rc32.SetRight (rc31, AnchorParam.Left);

rc32.AppendMinLeft (contour, ContourPosition.LastOutOutside);

var rc33 = view.CreateRect();
rc33.SetRight (rc32, AnchorParam.Left);
rc33.AnchorLeftTopBottom(null, 0, 220, 110);

// Create fourth row of rectangles.

var rc4l = view.CreateRect () ;
rc4l.AnchorLeftTopBottom(null, 0, 320, 10);
rc4l.AppendMaxRight (contour, ContourPosition.
var rc42 = view.CreateRect () ;
rc42.AnchorTopBottom (null, 320, 10);
rc42.SetlLeft (rc4l, AnchorParam.Right);
rc42.AppendMaxRight (contour, ContourPosition.
var rc43 = view.CreateRect () ;
rc43.AnchorTopBottom (null, 320, 10);
rc43.SetlLeft (rc42, AnchorParam.Right);
rc43.AppendMaxRight (contour, ContourPosition.
var rc44 = view.CreateRect();
rc44.AnchorTopBottom (null, 320, 10);
rc44.SetlLeft (rc43, AnchorParam.Right);
rc44.AppendMaxRight (contour, ContourPosition.
var rc45 = view.CreateRect () ;

rcd45.SetLeft (rc44, AnchorParam.Right);
rc45.AnchorRightTopBottom (null, 0, 320, 10);

// Calculate all rectangle coordinates based
host.PerformLayout () ;

FirstInOutside);

NextOutOutside) ;

FirstInOutside);

NextOutOutside) ;

on the constraints provided.

// Draw the rectangles and contour on a bitmap.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

using var bmp = new GcBitmap ((int) (view.Width + 40),
using var g = bmp.CreateGraphics (Color.White);

var m = Matrix3x2.CreateTranslation (20, 20);

g.Transform = m;

// Draw the rectangles and contour.
DrawContour (contour) ;

DrawRect (rcll, Color.CornflowerBlue);
DrawRect (rcl2, Color.CornflowerBlue);
DrawRect (rc21l, Color.CornflowerBlue);
DrawRect (rc22, Color.Violet);
DrawRect (rc23, Color.Orange);
DrawRect (rc24, Color.Violet);

DrawRect (rc25, Color.CornflowerBlue);

(
(
(
(
(
(
DrawRect (rc31, Color.CornflowerBlue);
DrawRect (rc32, Color.Violet);
DrawRect (rc33, Color.CornflowerBlue);
DrawRect (rc4l, Color.CornflowerBlue);
DrawRect (rc42, Color.Violet);
DrawRect (rc43, Color.CornflowerBlue);
DrawRect (rc44, Color.Violet);
DrawRect (rc45, Color.CornflowerBlue);
void DrawContour (Contour co)

{

(int) (view.Height + 40),

var pts = co.Points.Select(ap => ap.TransformedLocation) .ToArray();

g.DrawPolygon (pts, new Pen(Color.Green, 2));

}

void DrawRect (LayoutRect r, Color c)

{

g.Transform = r.Transform.Multiply (m) ;

g.DrawRectangle (r.AsRectF (), new Pen(c, 2));

// Save the image.
bmp.SaveAsPng ("test8.png") ;

© 2024 MESCIUS inc. All rights reserved.

81

true);

Document Solutions for Imaging 82

Complex Graphic Layouts

Dslmaging provides Surface, Layer, View, Space, and Visual classes in GrapeCity.Documents.Layout.Composition
namespace that acts as a medium between the layout engine and the drawing surface, allowing you to draw complex
graphics, text, and images. Furthermore, these classes also enable you to customize the z-order and clipping of the
drawn graphics.

Surface is the main class in the Composition engine. Surface class contains a LayoutHost (the layout engine's root
object) and one or more views (layers). Layers consist of visuals (drawable elements) and nested layers. The Render
method of Surface class calls PerformLayout method of LayoutHost class to calculate the surface layout and then it
draws all the layers, including nested ones, from the bottom to the top layer on the specified GeGraphics object

Layers are of two types: Layer and View class objects (derived from Layer objects). The View object encapsulates

the LayoutView object, which represents a separate coordinate system with its own transformation matrix. The Layer
object functions as a lightweight View with its own list of visuals, nested layers, and possible clipping area. The Surface
object can only create Views, not Layers. However, each View object (as well as the Layer object) can create both
nested Layers and nested Views. You must create at least one View on the Surface then use that View to create nested
Layers (with the same transformation) or nested Views (with different transformation matrices).

Layers contain Visuals and Spaces. The Space object represents a LayoutRect that may affect the layout of other
elements but is never drawn itself. Spaces are not part of the z-hierarchy of visual elements. The Visual class derives
from the Space class. Visual class represents an element that will be drawn on the target GcGraphics. The Render
method of the Surface class calls the special Draw delegate of the Visual and Layer classes (with the Visible property
set to True) and passes the GcGraphics object and the current item (Layer or Visual) as parameters to the Draw
delegate.

Refer to the following example code to draw a complex graphic with some text:

C#

// Set text format.

var fmt = new TextFormat

{
FontName = "Segoe UI",
FontSize = 12f,

ForeColor = Color.White
}:

// Initialize Surface.

var sf = new Surface();

// Create LayoutView.
var view = sf.CreateView (10, 10);

// Create first figure.
var figl = view.CreateVisual();
figl.LayoutRect.AnchorTopLeft (null, 10, 10, 300, 200);
figl.Draw = (g, v) => {
g.FillEllipse (v.AsRectF (), Color.LightSalmon);
g.DrawString ("1", fmt, new PointF (50, 50));
bi

// Create second figure.

var fig2 = view.CreateVisual ((g, v) => {
g.FillRoundRect (v.AsRectF (), 20, Color.MediumAguamarine) ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 83

g.DrawString ("2", fmt, new PointF(v.Width - 35, v.Height - 45));

1)
fig2.LayoutRect.AnchorTopLeft (null, 50, 50, 300, 200);

// Create third figure.
view.CreateVisual ((g, v) => {

g.FillRectangle (v.AsRectF (), Color.CornflowerBlue);

g.DrawString ("3", fmt, new PointF(v.Width - 27, v.Height - 35));
}) .LayoutRect.AnchorTopLeft (null, 90, 90, 300, 200);

// Bring the first and second figures to the front.
fig2.BringToFront () ;
figl.BringToFront () ;

// Initialize GcBitmap.

using var bmp = new GcBitmap (400 * 2, 300 * 2, true);
using (var g = bmp.CreateGraphics (Color.White))

{

g.Transform = Matrix3x2.CreateScale(2);
// Render the surface.

sf.Render (g) ;

// Save the image.
bmp.SaveAsPng ("Composition.png") ;

Clipping

Any clipping specified on a Layer object applies to the layer's visuals and the nested layers. The Layer class provides

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 84

two properties that allow you to define clipping: ClipRect and CreateClipRegion. You can specify just one of these
two properties or both. The behavior is different in the three cases:

1. If only ClipRect is specified, then LayoutRect value of that property defines the clipping. Note that it can be a
LayoutRect in any View on the same Surface and can have its transformation applied to the corresponding
View.

C#

// Initialize Surface.

var sf = new Surface();

// Create first LayoutView.
var view = sf.CreateView(l, 1);

// Create first sub-layer.
var nestedLayerl = view.CreateSubLayer();

// Create first figure.
var rect = nestedLayerl.CreateVisual((g, v) => {
g.DrawRectangle (v.AsRectF (), new Pen(Color.Magenta, 1));

g.DrawString ("Rectangle 1", new TextFormat
{

FontName = "Segoe UI",

FontSize = 1lo6f,

ForeColor = Color.Magenta

}, new PointF (120, 90));

)i
rect.LayoutRect.AnchorTopLeft (null, 20, 20, 300, 200);

// Create second sub-layer.
var nestedLayer2 = view.CreateSubLayer();

// Create second figure.
nestedLayer2.CreateVisual ((g, v) => {
g.FillRectangle (v.AsRectF (), new HatchBrush (HatchStyle.Weave)
{
BackColor = Color.White,
Color.RoyalBlue

ForeColor

1)
}) .LayoutRect.AnchorExact (rect.LayoutRect) ;

// Create second LayoutView.
var view2 = sf.CreateView(l, 1) .Translate (120, 30).Rotate (30);

// Create clipping region.
var clipRect = view2.CreateVisual ((g, v) => {
g.DrawRectangle (v.AsRectF (), Color.Green, 1, DashStyle.Dash);
}) .LayoutRect;
clipRect.AnchorTopLeft (null, 0, 0, 300, 100);

// Set clipping region.
nestedLayer2.ClipRect = clipRect;

© 2024 MESCIUS inc. All rights reserved.

85

’

true)

280 * 2,

bmp.CreateGraphics (Color.White))

’

Matrix3x2.CreateScale (2);

new GcBitmap (400 * 2,

L

.
e
oninianaaninag

e
-
o
m&”mﬂ««%&%f\»¥
i
SR,
.
-

-

va

£
Sl
oy

; \W

-
-

.

ARG
Soice
£

L
s
fooiss
£ »\V&V\V\Vﬂ i

PRse e
i
T
Covee
S
e
SIS

NEEOER

S
S

Document Solutions for Imaging

// Bring first sub-layer to front.

nestedLayerl.BringToFront ()
// Initialize GcBitmap.

using var bmp

(var g =

using

g.Transform

// Render the surface.

sf.Render (g) ;

bmp.SaveAsPng ("Clipping.png")

// Save the image.

2. If only CreateClipRegion delegate is specified, then GcGraphics.PushClip(clipRegion) applies the clip region

layer's own coordinate system without additional transformations. Using CreateClipRegion delegate allows you
to set a non-rectangular clipping area. You can create an arbitrary path, then a clipping region based on that

path, and return it from the delegate.
3. If both ClipRect and CreateClipRegion properties are specified, then the clip region is defined in the coordinate

returned by the delegate to the graphics before drawing the layer. In this case, the clip region is defined in the

origin, with axes directed right and down along its sides. Similar to the first case, LayoutRect can be from any
View, and its transformation does not depend on the transformation of the layer to be clipped. Then the
returned clip region is applied in the coordinate system defined by ClipRect by calling CreateClipRegion
delegate. After applying the clip region, objects on the layer are drawn in the layer's coordinate system, while
the clipping remains transformed by the ClipRect and CreateClipRegion. This approach simplifies creating
complex clipping scenarios. For example, to create a rotated elliptical clipping, you can return an unrotated
elliptical region from the CreateClipRegion delegate and rotate it using the ClipRect defined transformation.

system of the LayoutRect specified by the ClipRect property. The top left corner of LayoutRect becomes the

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

C#

// Initialize Surface.
var sf = new Surface();

// Create first LayoutView.
var view = sf.CreateView(l, 1);

// Create first sub-layer.
var nestedlLayerl = view.CreateSublayer():;

// Create first figure.

var rect = nestedLayerl.CreateVisual((g, v) => {
g.DrawRectangle (v.AsRectF (), new Pen(Color.MediumAgquamarine, 1));
g.DrawString ("Rectangle 2", new TextFormat

{

FontName = "Segoe UI",
FontSize = 16f,
ForeColor = Color.MediumAgquamarine

}, new PointF (120, 90));

)i
rect.LayoutRect.AnchorTopLeft (null, 10, 40, 300, 200);

// Create second sub-layer.
var nestedLayer2 = view.CreateSubLayer();

// Create second figure.

nestedLayer?2.CreateVisual ((g, v) => {
var lgb = new LinearGradientBrush(Color.Blue, Color.Red);
g.FillRectangle (v.AsRectF (), 1lgb);

}) .LayoutRect.AnchorExact (rect.LayoutRect) ;

// Create second LayoutView.
var view2 = sf.CreateView(l, 1) .Translate (10, 140) .Rotate(-20);

// Create clipping region.
var clipRect = view2.CreateVisual ((g, v) => {
g.DrawRectangle (v.AsRectF (), Color.Salmon, 1, DashStyle.Dash);
}) .LayoutRect;
clipRect.AnchorTopLeft (null, 0, 0, 350, 90);

// Set clipping region.
nestedLayer2.ClipRect = clipRect;
nestedLayer2.CreateClipRegion = (g, layer) =>
{
var path = (GcBitmapGraphics.Path)g.CreatePath():;
var rc = layer.ClipRect.AsRectF () ;
rc.Inflate (0, 20);
path.PathBuilder.AddFigure (new EllipticFigure (xc));
return g.CreateClipRegion (path);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 87

// Send second sub-layer to back.
nestedLayer?2.SendToBack () ;

// Initialize GcBitmap.

using var bmp = new GcBitmap (380 * 2, 230 * 2, true);
using (var g = bmp.CreateGraphics (Color.White))

{

g.Transform = Matrix3x2.CreateScale(2);
// Render the surface.

sf.Render (qg);

// Save the image.
bmp.SaveAsPng ("ClippingEllipticalRegion.png") ;

Anchor Points
Layer class provides CreateVisual method that creates a Visual that is not associated with a LayoutRect. The position
and size of the Visual are calculated based on one or several anchor points.

The anchor points assigned to AnchorPoints property of Visual class are recalculated to the View coordinate system
and saved to Points property of Visual class before executing the Draw delegate of Visual class.

Refer to the following example code to draw a rectangle relative to anchor points:

C#

const int pageWidth = 500;
const int pageHeight = 300;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

// Initialize Surface.

var sf = new Surface();

// Create LayoutView.

var view = sf.CreateView (pageWidth, pageHeight);

// Create margin rectangle.

var marginRect = view.CreateVisual ((g,

V)

=>

g.DrawRectangle (v.AsRectF (), new Pen(Color.Green));

}) .LayoutRect;
marginRect.AnchorDeflate (null, 10);

// Create points.

}, DrawAP

}, DrawAP

var apl = marginRect.CreatePoint (0.25f, O
var ap2 = marginRect.CreatePoint (0.75f, O
var ap3 = marginRect.CreatePoint (0.75f, O
var ap4 = marginRect.CreatePoint (0.25f, 0.
var bluePen = new Pen (Color.CornflowerBlue) ;
// Create anchor points.
view.CreateVisual (new AnchorPoint[] { apl
view.CreateVisual (new AnchorPoint[] { ap2
view.CreateVisual (new AnchorPoint[] { ap3
view.CreateVisual (new AnchorPoint[] { ap4

// Draw anchor points.
void DrawAP (GcGraphics g, Visual v)
{

var pt = v.Points[0];

g.DrawRectangle (new RectangleF (pt.X - 5,

// Draw polygon through the anchor points.
{ apl,

view.CreateVisual (new AnchorPoint[]
(g, v) => {

g.DrawPolygon (v.Points, new Pen(Color.Red));

)

// Initialize GcBitmap.

using var bmp = new GcBitmap (pageWidth * 2,

)
)
}, DrawAP)
}, DrawAP)

ap2,

using (var g = bmp.CreateGraphics (Color.White))

{

g.Transform = Matrix3x2.CreateScale(2);

// Render the surface.
sf.Render (qg);

// Save the image.
bmp.SaveAsPng ("AnchorPoints.png") ;

© 2024 MESCIUS inc. All rights reserved.

pt.Y -

ap3,

’
’

’

’

5, 10,

ap4 1},

pageHeight * 2,

10),

bluePen) ;

true);

Document Solutions for Imaging 89

Contours

A Contour can be visualized similarly to anchor points. The Contour and AnchorPoints properties of Visual class are
mutually exclusive; assigning both properties to non-empty values causes an exception when drawing the Surface. The
Contour points are converted to regular points via Points property of Visual class before executing the Draw delegate.
Then, you can use methods such as DrawPolygon of GcGraphics class to render the contour from the Draw delegate.

You may encounter a situation where there are several curves and you need to fill the space between them. The Draw
delegate of Layer class enables you to fill the space between several contours. Each Contour can be associated with a

separate Visual object on the same View or Layer. You can obtain an array of all visuals from the Draw delegate

using GetVisuals method of Layer class. You can create a graphics path and add multiple contours as separate figures
using the values of Points property of Visual class.

Refer to the following example code to draw multiple contours and fill the space between them by drawing multiple
rectangles:

C#

// Initialize Surface.

var sf = new Surface();

// Create bar contour.
var cl = CreateBarContour (sf);

// Create donut contour.
var (c2, c3) = CreateDonutContours(sf);

// Create first LayoutView.
var view = sf.CreateView(l, 1, (g, 1) =>
{
using var path = g.CreatePath();
path.SetFillMode (FillMode.Winding) ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

var figures = 1l.GetVisuals();
for (int i = 0; i < figures.Length; i++)
{

var pts = figures[i].Points;

path.BeginFigure (pts[0]);
for (int j = 1; j < pts.Length; j++)
path.AddLine (pts[jl);

path.EndFigure (FigureEnd.Closed) ;

}

g.FillPath (path, Color.LemonChiffon);

g.DrawPath (path, Color.Tomato, 1f);

1)

// Create Visuals.

view.CreateVisual (cl, false);
view.CreateVisual (c2, false);
view.CreateVisual (c3, false);

// Create second LayoutView.
var view2 = sf.CreateView(l, 1) .Translate(-90, -20).Skew (30, 0) .Rotate (20);

// Draw rectangles.

float top = 0f;

var pen = new Pen(Color.LightSeaGreen);

for (int 1 = 0; 1 < 22; i++)

{
DrawRects (view2, pen, top, cl, c2, c3);
top += 20f;

// Initialize GcBitmap.

using var bmp = new GcBitmap (600 * 2, 570 * 2, true);
using (var g = bmp.CreateGraphics (Color.White))

{

g.Transform = Matrix3x2.CreateScale(2);

// Render the surface.
sf.Render (g);

// Save the image.
bmp.SaveAsPng ("Contours.png") ;

// Create bar contour.
static Contour CreateBarContour (Surface surf)
{
// Create layout view for bar contour.
var fig = surf.CreateView(l, 1) .Translate (160, 80) .Rotate(-30);

// Create rectangular space.
var sp = fig.CreateSpace () .LayoutRect;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

sp.AnchorTopLeft (null, 0f, 0f, 30, 500);

// Create contour.
var ¢ = fig.LayoutView.CreateContour () ;

// Create points to anchor.

c.AddPoints (new AnchorPoint[]

{
sp.CreatePoint

14

sp.CreatePoint (1,

(0
sp.CreatePoint (1,
(1
(0

P P O O
~

sp.CreatePoint
1)

return c;

14

// Create donut contour.
static (Contour, Contour) CreateDonutContours (Surface surf)
{

// Create layout view for donut contour.

var fig = surf.CreateView(l, 1) .Translate(30, 100).Skew (20, 0);

// Set dimensions of the donut contour.
float rMax = 150;

float xOffsetMax = 200;

float yOffsetMax = 200;

float rMin = 100;

float xOffsetMin = 230;

float yOffsetMin = 210;

int nMax = 100;

int nMin = 70;

var maxPoints = new List<AnchorPoint> (nMax) ;
var minPoints = new List<AnchorPoint> (nMin) ;

double deltaMax = Math.PI * 2 / nMax;
double deltaMin Math.PI * (-2) / nMin;
var 1lv = fig.LayoutView;

for (int i = 0; 1 < nMax; 1i++)

{
double alpha = deltaMax * i;
float x (float) (Math.Cos (alpha) * rMax + xOffsetMax);
float y = (float) (Math.Sin(alpha) * rMax + yOffsetMax);
maxPoints.Add (lv.CreatePoint (0f, 0f, x, vy)):

for (int i = 0; 1 < nMin; 1i++)

double alpha = deltaMin * i;

float x (float) (Math.Cos (alpha) * rMin + xOffsetMin);
float y = (float) (Math.Sin(alpha) * rMin + yOffsetMin);
minPoints.Add (lv.CreatePoint (0f, 0f, x, vy));

© 2024 MESCIUS inc. All rights reserved.

91

Document Solutions for Imaging

// Create contours.
var cl = lv.CreateContour () ;
cl.AddPoints (maxPoints) ;

var c2 = lv.CreateContour () ;
c2.AddPoints (minPoints) ;

return (cl, c2);

// Draw rectangles.
static void DrawRects (View view, Pen pen, float top,
{
LayoutRect? rPrev = null;
while (true)
{
var r0 = view.CreateVisual ((g, v) => {
g.DrawRectangle (v.AsRectF (), pen);
}) .LayoutRect;
if (rPrev is null)
r0.AnchorTopLeft (null, top, 100);
else
{
r0.SetTop (null, AnchorParam.Top, top):;
r0.SetLeft (rPrev, AnchorParam.Right);
}
r0.SetHeight (16) ;

params Contour/|]

r0.AppendMaxRight (null, AnchorParam.Left, 500);

var rl = view.CreateSpace () .LayoutRect;
rl.SetTop(null, AnchorParam.Top, top):;
rl.SetHeight (16);

rl.SetLeft (r0, AnchorParam.Right);

rl.AppendMaxRight (null, AnchorParam.Left, 500);

foreach (var c in contours)

{

r0.AppendMaxRight (c, ContourPosition.FirstInOutside);

rl.AppendMaxRight (c, ContourPosition.NextOutOutside) ;

}
view.Surface.PerformLayout () ;
if (rl.wWwidth > 0f)
rPrev = rl;
else
{
((Space)rl.Tag) .Detach();
break;

© 2024 MESCIUS inc. All rights reserved.

92

contours)

93

Document Solutions for Imaging

v

inc. All rights rese

Document Solutions for Imaging 94

Tables

Drawing tables is a common task when creating documents in PDF, JPEG, SVG, and other formats. Creating a table
requires calculating the position of the cells, size of the cells, position of the table, size of the table, etc., but
calculating all these parameters manually consumes a lot of effort and time. Dsimaging provides a TableRenderer
class in GrapeCity.Documents.Drawing namespace that allows you to draw the table without having to think much
about the size of table columns, merged cells, the layout of rotated text auto-fitting, etc.

Dslmaging's layout engine handles the task of automatically calculating all the complex details of cell and table
resizing and positioning; you just need to provide information about the desired layout, style, and content.

The LayoutHost is the layout engine's core object. A host is always required to instantiate views and calculate the
layout. A LayoutHost creates LayoutView. A LayoutView object is a fixed-width and fixed-height rectangle. Each view
has its own transformation matrix. The LayoutView can be thought of as a transformed surface with an origin (zero
point), two axes (X and Y), and base dimensions (Width and Height). LayoutView places rectangles (LayoutRect
objects) whose sides are always parallel to the LayoutView's X or Y axis. Based on the constraints specified, the layout
engine calculates the size and position of those rectangles relative to the owner LayoutView.

A LayoutView is created to place a table in it. A table is always contained within a rectangle (LayoutRect). The exact
size of that rectangle is unknown. The size may vary depending on the contents of the table. However, we must repair
at least one table corner (or two or four corners if necessary).

The TableRenderer class is built on top of the layout engine described in Layouts. All table rows, columns, vertical and
horizontal grid lines, cells, and cell text have the associated LayoutRect objects available through the object model.
The grid lines are individual rectangles with their own width and height. A table cell is also more than just the
intersection of a table column and row. Table cells are added to the grid as separate objects on top of the columns
and rows. The same grid cell may contain regular, background, and foreground table cells. TableRenderer is a useful
tool for drawing tables of any complexity because it combines this flexibility with the power of the layout engine.
TableRenderer represents an immutable table. You cannot add more rows to an existing table or split it into two parts;
however, you can create a new TableRenderer instance or more instances with the desired number of rows. You can
use an instance of TableRenderer for measuring a table without actually drawing it.

Create Table

The TableRenderer constructor accepts multiple parameters. The following table lists the parameters accepted by
TableRenderer constructor:

Parameter Description

graphics This parameter specifies the GeGraphics object that will be used to draw the table after it has been
constructed.

tableRect This parameter is the table's LayoutRect.

fixedSides This parameter specifies which sides of a table are fixed.

rowCount This parameter specifies the overall number of rows in the table. The table will have at least one row.

columnCount This parameter specifies the overall number of columns in the table. The table will have at least one
column.

gridLineColor ' This parameter specifies the color of grid lines.

gridLineWidth This parameter specifies the thickness of the table grid lines by default. Use
the SetVerticalGridLineWidth and SetHorizontalGridLineWidth methods for applying custom
thickness to individual grid lines).

The constructor also has optional parameters to specify row minimum height and column minimum width, in case

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 95

they are not defined manually. The constructor can also set padding for all sides relative to the outer table frame.

The column width and row height do not have to be integers. You can apply star sizes to table columns if both the left
and right sides of the table are fixed. It is possible to mix star width, fixed width, and auto width columns in the same
table. To set the explicit column width, use the SetWidth method of LayoutRect. Alternatively, you can add a "minimal
width" constraint for auto-sized columns by using the AppendMinWidth method of LayoutRect. Applying minimal
width constraints is optional for auto-sized columns with horizontal text (and FixedWidth of CellStyle is set to false).
Similar constraints can be applied to table rows. You can assign star heights to table rows if the top and bottom table
sides are both fixed.

To create a simple table:

1. Initialize LayoutHost, LayoutView, and LayoutRect class instances to define table size and position. The layout
engine automatically calculates the position of the table and cells.

2. Create an instance of the TableRenderer class and set the parameters of the table.

Set the star width (proportional width) of the columns using SetStarWidth method.

4. Use PerformLayout method on the LayoutHost, which will calculate the coordinates based on the constraints
provided.

5. Use Render method on TableRenderer object, which will draw the table.

w

C#

// Initialize GcBitmap.
var bmp = new GcBitmap (440, 270, true);

// Create a graphic.
var g = bmp.CreateGraphics (Color.White);

// Initialize LayoutHost.
var host = new LayoutHost();

// Create LayoutView.
var view = host.CreateView (400, 230, Matrix.Identity);

// Create LayoutRect. Add anchor points.
var rt = view.CreateRect():;
rt.AnchorTopLeftRight (null, 36, 36, 36);

// Create an instance of TableRenderer.
var ta = new TableRenderer (
g,
rt, FixedTableSides.TopLeftRight,
rowCount: 5,
columnCount: 4,
gridLineColor: Color.Coral,
gridLineWidth: 3,
rowMinHeight: 30);

// Set the star width (proportional width) of the columns.

var columns = ta.ColumnRects;
columns [0].SetStarWidth (1) ;
columns[1l].SetStarWidth (5) ;
columns[2] .SetStarWidth (2) ;
columns [3].SetStarWidth (3) ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 96

// Calculate all coordinates based on the constraints provided.
host.PerformLayout () ;

// Set the transformation matrix of the LayoutView when creating the view.
var m = Matrix3x2.CreateTranslation (20, 20);
g.Transform = view.Transform.Multiply (m) ;

// Draw the table.
ta.Render () ;

// Save the image.
bmp.SaveAsPng ("simple-table.png");

The output of the above-mentioned example code is shown in the image below:

Table Cells

The table cells are separate objects added to the table grid, and one cell can spread to several rows and/or columns.
The AddCell method adds a table cell containing text or custom content in the specified position with the default or
specified style. The AddCell method also allows you to specify row and column spans. There are three types of table
cells: normal (regular), background, and foreground.

The regular cells appear on top of the grid and cannot overlap. For example, if such a cell merges two rows, there will
be no grid line between the rows in the cell's column. These cells are added at the specified row or column index
using the TableRenderer class's indexer property. If there is at least one regular cell, the grid lines will only be drawn
around such cells. The grid lines are not drawn around the gaps that are not covered by regular cells.

The AddMissingCells method ensures that there are no gaps in the grid.

The background cells always appear behind the grid and behind the filling of the regular and foreground cells (if such
a fill exists). Background cells can be overlapped by other cells. You can use background cells to highlight some
regions in the table. For example, the odd rows may have a different background color. Also, sometimes you may
want to display two or more TextLayout objects in the same table cell. One TextLayout will belong to a regular cell,
and the others will belong to background cells. If background cells have some text content, their size can be adjusted
automatically, as for the regular cells.

The foreground cells appear on top of the background and regular cells. You can use such cells to draw additional
elements on top of the grid. Foreground cells can overlap each other and other cells.

Add Cells to Table

To add cells to the table:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 97

1. Add cells to the table using AddCell method which takes CellStyle, row, and column indexes as its arguments.
2. Use AddMissingCells method to fill the gaps in the table with empty regular cells.

C#

// Initialize GcBitmap.
var bmp = new GcBitmap (440, 270, true);

// Create a graphic.
var g = bmp.CreateGraphics (Color.White);

// Initialize LayoutHost.
var host = new LayoutHost();

// Create LayoutView.
var view = host.CreateView (400, 230, Matrix.Identity);

// Create LayoutRect. Add anchor points.
var rt = view.CreateRect();
rt.AnchorTopLeftRight (null, 36, 36, 36);

/* Create an instance of TableRenderer.
Pass paddingAll paramater to avoid overlapping of grid lines with the outer table
frame. */
var ta = new TableRenderer (
g,
rt, FixedTableSides.TopLeftRight,
rowCount: 5,
columnCount: 4,
gridLineColor: Color.Coral,
gridLineWidth: 3,
rowMinHeight: 30,
paddingAll: 5);

// Set the star width (proportional width) of the columns.
var columns = ta.ColumnRects;
columns [0] .SetStarWidth (1) ;
[1].SetStarWidth (5) ;
columns[2] .SetStarWidth(2) ;
[3].SetStarWidth (3)

columns

’

columns

// Set style of the new cell.

var csBlue = new CellStyle

{
LineColor = Color.LightSkyBlue,
LineWidth = 3f,
LinePaddingAll = 2f

bi

// Add cell to the table.
ta.AddCell (csBlue, 2, 1);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 98

// Set style of the second new cell.
var csGreen = new CellStyle (csBlue)

{

LineColor = Color.MediumAquamarine
}i

// Add the second cell to the table.
ta.AddCell (csGreen, 0, 3);

// Fill gaps in the table with empty regular cells.
ta.AddMissingCells () ;

// Set the transformation matrix of the LayoutView when creating the view.
var m = Matrix3x2.CreateTranslation (20, 20);

g.Transform = view.Transform.Multiply (m) ;

// Draw the table.
ta.Render () ;

// Save the image.
bmp.SaveAsPng ("add-cells.png") ;

The output of the above-mentioned example code is shown in the image below:

Add Data to Cells

Dslmaging allows you to add data to the cells by defining the TextFormat property. To add data to the cells:

1. Create a text format using the TextFormat class, then a cell style for normal cells using the CellStyle class.
Create a cell style for header text using the CellStyle class, and a header format using the TextFormat class.
2. To add data to cells, use AddCell method and pass the data to be added to cells as one of its parameters.

C#

// Initialize GcBitmap.
var bmp = new GcBitmap (470, 270, true);

// Create a graphic.
var g = bmp.CreateGraphics (Color.White);

// Initialize LayoutHost.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

var host = new LayoutHost();

// Create LayoutView.
var view = host.CreateView (450, 230, Matrix.Identity);

// Create LayoutRect. Add anchor points.
var rt = view.CreateRect():;
rt.AnchorTopLeftRight (null, 36, 36, 36);

// Create an instance of TableRenderer.
var ta = new TableRenderer (g,
rt, FixedTableSides.TopLeftRight,
rowCount: 5,
columnCount: 4,
gridLineColor: Color.Empty,
gridLineWidth: 1,
rowMinHeight: 30,
paddingAll: 3)

// Add table frame style.

{
TableFrameStyle = new FrameStyle

{
FillColor = Color.AliceBlue,

LineColor = Color.CornflowerBlue,
LineWidth = 1,
CornerRadius = 5

}s

// Set the star width (proportional width) of the columns.

var columns = ta.ColumnRects;
columns[0] .SetStarWidth (1) ;
columns[1l].SetStarWidth (5) ;
columns[2] .SetStarWidth(2) ;
columns [3].SetStarWidth (3) ;

// Set text format.

var fmt = new TextFormat
{
FontName = "Calibri",
ForeColor = Color.CornflowerBlue,

FontSize = 16
}:

// Set cell style for normal text.

var csNormal = new CellStyle

{
TextFormat = fmt,
ParagraphAlignment = ParagraphAlignment.Center,
PaddingLeftRight = 10,

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 100

FillColor
LineColor = Color.CornflowerBlue,
LinePaddingAll = 2,

LineWidth = 1,

CornerRadius = 5

Color.MistyRose,

}i

// Set text alignment to center.

var csCenter = new CellStyle(csNormal)

{
TextAlignment = TextAlignment.Center,
PaddingLeftRight = O,

i

// Set cell style for table header.
var csHeader = new CellStyle(csCenter)
{
TextFormat = new TextFormat (fmt)
{
ForeColor = Color.White,
FontBold = true
by
FillColor = Color.LightBlue

// Add cells to the table with data and cell style.
ta.AddCell (csHeader, 0, 0, "#");

ta.AddCell (csHeader, 0, 1, "Name");
ta.AddCell (csHeader, 0, 2, "Age");
ta.AddCell (csHeader, 0, 3, "Country");
ta.AddCell (csCenter, 1, 0, "1.");
ta.AddCell (¢csNormal, 1, 1, "Alice");
ta.AddCell (csCenter, 1, 2, "25");
ta.AddCell (csNormal, 1, 3, "Spain");
ta.AddCell (csCenter, 2, 0, "2.");
ta.AddCell (csNormal, 2, 1, "Bob");
ta.AddCell (csCenter, 2, 2, "36");
ta.AddCell (csNormal, 2, 3, "Germany");

~
~

ta.AddCell (csCenter, 3, 0, "3.");
ta.AddCell (csNormal, 3, 1, "Ken");
ta.AddCell (csCenter, 3, 2, "5");
ta.AddCell (csNormal, 3, 3, "Brazil");
ta.AddCell (csCenter, 4, 0, "4.");
ta.AddCell (csNormal, 4, 1, "Teddy"):;
ta.AddCell (csCenter, 4, 2, "12");
ta.AddCell (csNormal, 4, 3, "Mexico");

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 101

// Draw the table.
ta.Render () ;

// Save the image.
bmp.SaveAsPng ("add-data-to-cells.png");

The output of the above-mentioned example code is shown in the image below:

|)

(1.)(Alice [25)(Spain |

|Z Bob Il 36 | G'Hrmarw:

|Z Ken | 5 ||Brazil |

(4.)(Teddy [12 [Mexico |
Merge Cells

DsImaging allows you to merge cells by defining the column and row span in the AddCell method. To merge cells:

1. Use DefaultCellStyle property to set the default cell style.

2. Use AddCell method to add the cells to the table and also set the column and row spans while adding cells.
3. Use AddMissingCells method to fill the gaps in the table with empty regular cells.

4. Use ApplyCellConstraints method to calculate the layout of the table and cells.

C#

// Initialize GcBitmap.
var bmp = new GcBitmap (440, 270, true);

// Create a graphic.
var g = bmp.CreateGraphics (Color.White);

// Initialize LayoutHost.
var host = new LayoutHost();

// Create LayoutView.
var view = host.CreateView (400, 230, Matrix.Identity);

// Create LayoutRect. Add anchor points.
var rt = view.CreateRect():;
rt.AnchorTopLeftRight (null, 36, 36, 36);

// Create an instance of TableRenderer.
var ta = new TableRenderer (
g,
rt, FixedTableSides.TopLeftRight,
rowCount: 5,
columnCount: 4,

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 102

gridLineColor: Color.Empty,
gridLineWidth: 1,
rowMinHeight: 30,
paddingAll: 3)

// Add table frame style.

{
TableFrameStyle = new FrameStyle

{

LineColor = Color.CornflowerBlue,
LineWidth = 1,
CornerRadius = 5,

FillColor = Color.AliceBlue

}i

// Set the star width (proportional width) of the columns.

var columns = ta.ColumnRects;
columns[0] .SetStarWidth (1) ;
columns[1l].SetStarWidth (5) ;
columns[2] .SetStarWidth (2) ;
columns [3] .SetStarWidth (3) ;

// Set default cell style.
ta.DefaultCellStyle = new CellStyle
{
LinePaddingAll = 2,
LineColor = Color.CornflowerBlue,
LineWidth = 1,
CornerRadius = 5,
FillColor = Color.MistyRose
bi

// Add cells and set row and column spans.
ta.AddCell (0, 1, 3, 1);:
ta.AddCell (3, 0, 1, 4);
ta.AddCell (1, 2, 2, 2);

// Fill gaps in the table with empty regular cells.
ta.AddMissingCells () ;

// Calculate layout of the grid and cells.
ta.ApplyCellConstraints () ;

// Set the transformation matrix of the LayoutView when creating the view.
var m = Matrix3x2.CreateTranslation (20, 20);

g.Transform = view.Transform.Multiply (m) ;

// Draw the table.
ta.Render () ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 103

// Save the image.

bmp.SaveAsPng ("merge-cells.png") ;

The output of the above-mentioned example code is shown in the image below:

Table and Cell Styling

Each table cell has an associated style (CellStyle) that describes the appearance and behavior of the cell. For example,
the Background property in the CellStyle class defines whether the cell is in the background. The FrameStyle class
provides several appearance properties, such as FillColor, LineColor, LineWidth, LinePadding, CornerRadius, etc.,
and it is also used to describe the appearance of the outer table frame.

Gclmaging allows you to customize the table and cells by adding an outer table frame and inner cell borders. To
customize the table and cells:

1. Create an outer table frame using TableFrameStyle property.

2. Use AddMissingCells method to add empty cells to the table. Set the padding of the empty cells in the table to
make spaces equal using LinePaddingAll property, and also set LineColor and LineWidth to draw inner cell
borders.

3. Use ApplyCellConstraints method to calculate the layout of the table and the cells.

C#

// Initialize GcBitmap.
var bmp = new GcBitmap (440, 270, true);

// Create a graphic.
var g = bmp.CreateGraphics (Color.White);

// Initialize LayoutHost.
var host = new LayoutHost();

// Create LayoutView.
var view = host.CreateView (400, 230, Matrix.Identity);

// Create LayoutRect. Add anchor points.
var rt = view.CreateRect();
rt.AnchorTopLeftRight (null, 36, 36, 36);

// Create an instance of TableRenderer.

var ta = new TableRenderer (
g,

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

rt, FixedTableSides.TopLeftRight,
rowCount: 5,

columnCount: 4,

gridLineColor: Color.Empty,
gridLinewidth: 1,

rowMinHeight: 30,

paddingAll: 3)

// Add table frame style.
{
TableFrameStyle = new FrameStyle
{
LineColor = Color.CornflowerBlue,
LineWidth 1,
CornerRadius = 5,
FillColor = Color.AliceBlue

}i

// Set the star width (proportional width) of the columns.

var columns = ta.ColumnRects;
columns[0] .SetStarWidth (1) ;
columns[1l].SetStarWidth (5) ;
columns[2].SetStarWidth (2) ;
columns [3].SetStarWidth (3) ;

// Create empty cells.
ta.AddMissingCells (new CellStyle

{
LinePaddingAll = 2,

LineColor = Color.CornflowerBlue,
LineWidth = 1,
CornerRadius = 5,

FillColor = Color.MistyRose
}):

// Calculate layout of the grid and cells.
ta.ApplyCellConstraints () ;

// Set the transformation matrix of the LayoutView
var m = Matrix3x2.CreateTranslation (20, 20);
g.Transform = view.Transform.Multiply (m) ;

// Draw the table.
ta.Render () ;

// Save the image.
bmp.SaveAsPng ("table-cell-customization.png") ;

The output of the above-mentioned example code is shown in the image below:

© 2024 MESCIUS inc. All rights reserved.

when creating the view.

104

Document Solutions for Imaging 105

Text Customizations in Cells

The RightToLeft, TextAlignment, ParagraphAlignment, MaxWidth, and MaxHeight properties of CellStyle class
resemble the properties of the TextLayout class that set the style for text in a cell. The CellStyle class also

has RotationAngle property, which specifies the flow direction of the cell text. If cell content is rotated, then other
properties of CellStyle are also defined relative to the current text direction.

The FixedWidth and FixedHeight properties of CellStyle class fix the width and height of the cell. The FixedWidth
property is set to true by default, while the FixedHeight property is set to false. These properties work for merged and
rotated cells as well.

)
. = Table
:4% g points
3 =
a =)
1 England 38 36 26 26 27 40 8 19 53
2 France 20 49 42 32 28 48 35 42 91
3 Ireland 14 39 45 29 18 36 35 40 148
4 Ttaly 45 37 45 38 29 2 25 5 140
5 Scotland 28 24 49 41 16 5 36 40 116
6

Wales 37 40 36 7 26 49 10 38 85

Refer to the following example code to add text customizations in the cells:

C#

// Initialize Team.
var teams = new Team[]
{
new Team ("England"),
new Team("France"),
"Ireland"),
"Italy"™),
new Team("Scotland"),

new Team
new Team

(
(
(
(
(
new Team("Wales"),

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 106

}i

int imgW = 410;
int imgH = 320;
int scale = 2;

// Initialize GcBitmap.
using var bmp = new GcBitmap (imgW * scale, imgH * scale, true);

// Create a graphic.
using var g = bmp.CreateGraphics (Color.White);

// Set the transformation matrix of the LayoutView when creating the view.

g.Transform = Matrix3x2.CreateScale(scale);

// Initialize LayoutHost.
var host = new LayoutHost();

// Create LayoutView.
var view = host.CreateView (imgW, imgH) ;

// Create LayoutRect. Add anchor points.
var rt = view.CreateRect();
rt.AnchorTopRight (null, 10, 10);

// Create an instance of TableRenderer.
var ta = new TableRenderer (g,
rt, FixedTableSides.TopRight,
rowCount: teams.Length + 2,
columnCount: 11,
gridLineColor: Color.FromArgb (173, 223, 252),
gridLinewWidth: 1,
rowMinHeight: 10,
columnMinWidth: 10);

// Set text format.
var fmt = new TextFormat

{
FontName = "Tahoma",

FontSize = 12
}i

// Set cell style.
var cs = new CellStyle

{

TextFormat fmt,
FixedWidth = false,
PaddingAll = 4

}i

// Set horizonal cell style for table header.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

var csHeaderH = new CellStyle(cs)
{
TextFormat = new TextFormat (fmt)
{
ForeColor = Color.White,
FontBold = true
by
FillColor = Color.FromArgb (17, 93, 140),
TextAlignment = TextAlignment.Center,
ParagraphAlignment = ParagraphAlignment.Center,
bi

// Set vertical cell style for table header.
var csHeaderV = new CellStyle (csHeaderH)

{

270,
TextAlignment.Leading,

RotationAngle

TextAlignment
PaddingLeft = 3
}i

// Set cell style for numbers.
var csNumber = new CellStyle (cs)

{
TextAlignment = TextAlignment.Center

}s

// Set cell style for Nation.
var csNation = new CellStyle(cs)
{
TextFormat = new TextFormat (fmt)
{
ForeColor = Color.FromArgb (50, 123, 197)
by
bi

// Add the header cells.

ta.AddCell (csHeaderv, 0, 0, 2, 1, "Position");
ta.AddCell (csHeaderH, 0, 1, 2, 1, "Nation");
ta.AddCell (csHeaderH, 0, 2, 1, 4, "Games");
ta.AddCell (csHeaderv, 1, 2, "Played");
ta.AddCell (csHeaderv, 1, 3, "Won");

ta.AddCell (csHeaderVv, 1, 4, "Drawn");
ta.AddCell (csHeaderv, 1, 5, "Lost");
ta.AddCell (csHeaderH, 0, 6, 1, 4, "Points");
ta.AddCell (csHeaderv, 1, 6, "For");

ta.AddCell (csHeaderv, 1, 7, "Against");
ta.AddCell (csHeaderV, 1, 8, "Difference");
ta.AddCell (csHeaderv, 1, 9, "Tries");
ta.AddCell (csHeaderH, 0, 10, 2, 1, "Table\npoints");

// Add the data cells.

© 2024 MESCIUS inc. All rights reserved.

107

Document Solutions for Imaging 108

for (int i = 0; i < teams.Length; i++)
{

var team = teams[i];

int rowIndex = i + 2;

ta.AddCell (csNumber, rowIndex, 0, $"{i + 1}");
ta.AddCell (csNation, rowIndex, 1, team.Nation);
ta.AddCell (csNumber, rowIndex, 2, $"{team.Played}");
ta.AddCell (csNumber, rowlIndex, 3, $"{team.Won}");
ta.AddCell (csNumber, rowIndex, 4, S$"{team.Drawn}");
ta.AddCell (csNumber, rowIndex, 5, $"{team.Lost}");
ta.AddCell (csNumber, rowIndex, 6, S$"{team.For}");
ta.AddCell (csNumber, rowIndex, 7, $"{team.Against}");
ta.AddCell (csNumber, rowIndex, 8, S$"{team.Diff}");
ta.AddCell (csNumber, rowIndex, 9, S$"{team.Tries}");
ta.AddCell (csNumber, rowIndex, 10, S$"{team.TablePoints}");

// Change background for odd rows.
ta.DefaultCellStyle = new CellStyle
{

Background = true,

FillColor = Color.FromArgb (238, 238, 238)
bi
for (int i = 0; i1 < teams.Length; i += 2)
{

ta.AddCell (i + 2, 0, 1, 11);

// Draw the table.
ta.Render () ;

// Save the image.
bmp.SaveAsPng ("text-customizations.png") ;

// Create the class.
class Team
{
static readonly Random _rnd = new(24323429);

public string Nation;

public int Played, Won, Drawn, Lost;
public int For, Against, Diff, Tries;
public int TablePoints;

internal Team(string nation)

{

Nation = nation;

Played = rnd.Next (0, 50);
Won = rnd.Next (0, 50);
Drawn = rnd.Next (0, 50);
Lost = rnd.Next (0, 50);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

For = rnd.Next (0, 50);
Against = rnd.Next (0, 50);
Diff = rnd.Next (0, 50);
Tries = rnd.Next (0, 50);
TablePoints = rnd.Next (0,

150) ;

Draw Custom Content in Cells

109

Dslmaging allows you to draw custom content in a cell using CustomDraw delegate property of CellStyle class and it
is executed from the Render method of TableRenderer class. The CustomDraw property accepts two parameters: a
GcGraphics object (passed to the Render method) and a TableCell object.

>

Purple .

Shape Circle Triangle Rectangle Oval Square
Color
Red Circle Red Triangle Red Rectangle Red Oval Red Square
1 @ A IR @ 1
Green Circle Green Triangle Green Rectangle Green Oval Green Square
1 @ A R @ 1
Blue Circle Blue Triangle Blue Rectangle Blue Oval Blue Square
@9 A H @ B
Orange Circle Orange Triangle Orange Rectangle Orange Oval Orange Square
~ | @ | A @ 0
Purple Circle Purple Triangle Purple Rectangle Purple Oval Purple Square

Refer to the following example code to add custom content in the cells:

C#

// Initialize GcBitmap.

var bmp = new GcBitmap (960, 530, true);

// Create a graphic.

var g = bmp.CreateGraphics (Color.White);

// Initialize LayoutHost.

var host = new LayoutHost ()

// Create LayoutView.
var view = host.CreateView

(800, 500);

// Create LayoutRect. Add anchor points.

var rt = view.CreateRect ()
rt.AnchorTopLeft (null, 36,

© 2024 MESCIUS inc. All rights reserved.

’

36);

Document Solutions for Imaging

// Create an instance of TableRenderer.
var ta = new TableRenderer (g,
rt, FixedTableSides.TopLeft,
rowCount: 6, columnCount: 6,
Color.Black,

1);

gridLineColor:
gridLineWidth:

110

// Set height and width of the the rows and columns.

ta.RowRects[0].SetHeight (50) ;
ta.ColumnRects[0].SetWidth (120) ;

// Set the cell style.
var cs = new CellStyle
{

TextAlignment =

ParagraphAlignment

// Set text format.
TextFormat =

{

new Te
FontName = "Cal
16,

FontSizeInGraph
FontBold =

FontSize =

true

}i

// Add a background style for displaying shapes with

(diagonal line).
var csCornerTopRight =
{
Background =
LineWidth =
Borders =

true,
1f,

TextAlignment =
ParagraphAlignment
PaddingRight = 10,
PaddingTop = 5

bi

// Add a regular style for displaying color

same cell.
var csCornerBottomLeft

{
TextAlignment =

ParagraphAlignment =

PaddingLeft = 10,
PaddingBottom 5

}i

© 2024 MESCIUS inc. All rights reserved.

TextAlignment.Center,

= ParagraphAlignment.Center,

xtFormat

ibri",

icUnits = true,

new CellStyle(cs)

FrameBorders.MainDiagonal,
TextAlignment.Trailing,
= ParagraphAlignment.Near,

= new CellStyle(cs)

TextAlignment.Leading,

ParagraphAlignment.Far,

a custom drawn element

at the bottom left corner of the

Document Solutions for Imaging

//

ta.

//
ta

ta.

ta
ta
ta

//

ta.

//

ta.
ta.

ta

ta.
ta.

//

ta.

{

}:

//

ta.AddCell (1, 1,

Add a background cell at the top left corner.
AddCell (csCornerTopRight, 0, 0, "Shape");

Add row header cells.

.AddCell(cs, 0, 1, "Circle");

AddCell(cs, 0, 2, "Triangle");

.AddCell (cs, 0, 3, "Rectangle");

.AddCell (cs, 0, 4, "Oval");

.AddCell(cs, 0, 5, "Square");

Add a regular cell at the top left corner.

AddCell (csCornerBottomLeft, 0, 0, "Color");

Add column header cells.
AddCell(cs, 1, 0, "Red");
AddCell(cs, 2, 0, "Green");
.AddCell (cs, 3, 0, "Blue");
AddCell (cs, 4, 0, "Orange"):;
AddCell (cs, 5, 0, "Purple"):;
Add default cell style.

DefaultCellStyle = new CellStyle
PaddingTop = 3,
PaddingLeftRight = 20,
PaddingBottom = 55,
FixedWwidth = false,
TextAlignment = TextAlignment.Center,
TextFormat = new TextFormat
{
FontName = "Calibri",
FontSize = 14
s
// Set text layout.
CreateTextLayout = (g, cs, data) =>
{
var tl = g.CreateTextLayout();
tl.Append(((Figure)data) .Title, cs.TextFormat);
return tl;
s
// Draw the custom content into the cells.
CustomDraw = (g, tc) =>
{
((Figure)tc.Data) .Draw(g, tc.Width, tc.Height);
}
Add data cells.

new Figure ("Red Circle", Shape.Circle,

© 2024 MESCIUS inc. All rights reserved.

Color.Red));

111

Document Solutions for Imaging 112

ta.AddCell (1, 2, new Figure("Red Triangle", Shape.Triangle, Color.Red));
ta.AddCell (1, 3, new Figure("Red Rectangle", Shape.Rectangle, Color.Red));
ta.AddCell (1, 4, new Figure("Red Oval", Shape.Oval, Color.Red)):;
ta.AddCell (1, 5, new Figure("Red Square", Shape.Square, Color.Red));

ta.AddCell (2, 1, new Figure("Green Circle", Shape.Circle, Color.Green));

ta.AddCell (2, 2, new Figure("Green Triangle", Shape.Triangle, Color.Green));

ta.AddCell (2, 3, new Figure ("Green Rectangle", Shape.Rectangle,
Color.Green));

ta.AddCell (2, 4, new Figure("Green Oval", Shape.Oval, Color.Green));

ta.AddCell (2, 5, new Figure("Green Square", Shape.Square, Color.Green));

ta.AddCell (3, 1, new Figure("Blue Circle", Shape.Circle, Color.Blue));
ta.AddCell (3, 2, new Figure("Blue Triangle", Shape.Triangle, Color.Blue));
ta.AddCell (3, 3, new Figure("Blue Rectangle", Shape.Rectangle, Color.Blue));
ta.AddCell (3, 4, new Figure("Blue Oval", Shape.Oval, Color.Blue));
ta.AddCell (3, 5, new Figure("Blue Square", Shape.Square, Color.Blue));

ta.AddCell (4, 1, new Figure("Orange Circle", Shape.Circle, Color.Orange));

ta.AddCell (4, 2, new Figure("Orange Triangle", Shape.Triangle,
Color.Orange)) ;

ta.AddCell (4, 3, new Figure("Orange Rectangle", Shape.Rectangle,
Color.Orange)) ;

ta.AddCell (4, 4, new Figure("Orange Oval", Shape.Oval, Color.Orange));

ta.AddCell (4, 5, new Figure ("Orange Square", Shape.Square, Color.Orange));

ta.AddCell (5, 1, new Figure ("Purple Circle", Shape.Circle, Color.Purple));

ta.AddCell (5, 2, new Figure ("Purple Triangle", Shape.Triangle,
Color.Purple));

ta.AddCell (5, 3, new Figure ("Purple Rectangle", Shape.Rectangle,
Color.Purple));

ta.AddCell (5, 4, new Figure ("Purple Oval", Shape.Oval, Color.Purple));

ta.AddCell (5, 5, new Figure ("Purple Square", Shape.Square, Color.Purple));

// Draw the table.
ta.Render();

// Save the image.

bmp.SaveAsPng ("custom-content.png") ;
}
// Create enum for Shape.
enum Shape
{

Circle,

Triangle,

Rectangle,

Oval,

Square

// Create a class for Figure.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

class Figure

{

public
public
public

public

string Title;
Shape Shape;
Color Color;

Figure (string title, Shape shape, Color color)

{
Title = title;
Shape = shape;
Color = color;

public void Draw(GcGraphics g, float w, float h)
{
RectangleF rc;
var pen = new Pen(Color.Black, 1);
switch (Shape)
{
case Shape.Circle:
rc = new RectangleF(w / 2 - 20, h - 50, 40, 40);
g.FillEllipse(rc, Color);
g.DrawEllipse (rc, pen);
break;
case Shape.Triangle:

var points = new PointF[]
{
new(w / 2, h - 50),
new(w / 2 + 25, h - 10),
new(w / 2 - 25, h - 10)

g.FillPolygon (points, Color);
g.DrawPolygon (points, pen);
break;
case Shape.Rectangle:
rc = new RectangleF(w / 2 - 35, h - 50, 70, 40);
g.FillRectangle (rc, Color);
g.DrawRectangle (rc, pen);
break;
case Shape.Oval:
rc = new RectangleF(w / 2 - 35, h - 50, 70, 40);
g.FillEllipse(rc, Color);
g.DrawEllipse (rc, pen);
break;
case Shape.Square:
rc = new RectangleF(w / 2 - 20, h - 50, 40, 40);
g.FillRectangle (rc, Color);
g.DrawRectangle (rc, pen);
break;

© 2024 MESCIUS inc. All rights reserved.

113

Document Solutions for Imaging 114

Nested Tables

Nested tables are those in which a table (or tables) is drawn inside another table, where the larger table works as a
container for the smaller table. The nested tables work as a way for you to organize images or text in evenly spaced
cells. The nested tables can also be helpful in grouping different sets of data. DsImaging allows you to create nested
tables and add and customize the data in the nested tables by creating different objects of LayoutView and
LayoutRect.

Fire Diamond

Standard Representation Tabular Representation

Risk levels of hazardous materials in this facility
Health Risk Flammability Reactivity Special

Level 3 Level 2 Level 1

Refer to the following example code to draw nested tables:

C#

float scale = 1.4f;

// Initialize GcBitmap.
using var bmp = new GcBitmap ((int) (800 * scale), (int) (300 * scale), true);

// Create a graphic.
using var g = bmp.CreateGraphics (Color.White);
g.Transform = Matrix3x2.CreateScale (scale);

// Initialize LayoutHost.
var host = new LayoutHost();

// Create first table. The view is rotated 45 degrees counterclockwise.
var viewl = host.CreateView (100, 100, Matrix.CreateRotation (-Math.PI / 4));

var rectl = viewl.CreateRect () ;

// Colincide the rectl with the view.
rectl.AnchorExact (null) ;

// Create an instance of TableRenderer for the first table.

var tal = new TableRenderer (g, rectl, FixedTableSides.All,
rowCount: 2, columnCount: 2, Color.Black, gridLineWidth: 2);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

// Set height and width of the the rows and columns.
var columns = tal.ColumnRects;

columns [0].SetStarWidth (1) ;
columns[1l].SetStarWidth (1) ;

tal.RowRects[0].SetStarHeight (1) ;
tal.RowRects[1l].SetStarHeight (1) ;

// Set text format.
var fmtl = new TextFormat

{

FontName "Arial",
FontSize = 32,
FontSizeInGraphicUnits = true

}:

// Set cell style.
var csl = new CellStyle
{

CustomDraw

{

(g, tc) =>

var tl = g.CreateTextLayout()
tl.Append((string)tc.Data, fmtl);
tl.PerformLayout ()

var rc = tl.ContentRectangle;

var m = g.Transform;

// display the number centered and rotated 45 degrees clockwise
m = Matrix3x2.CreateTranslation(tc.Width * 0.5f, tc.Height * 0.5f)

g.Transform = Matrix3x2.CreateRotation ((float)Math.PI / 4) * m;

g.DrawTextLayout (t1l, new PointF (-rc.Width * 0.5f, -rc.Height * 0.5f));

}i

// Add the cells.
tal.AddCell (new CellStyle(csl)
{
FillColor = Color.FromArgb (102, 145, 255)
}, 0, 0).Data "3n;

tal.AddCell (new CellStyle(csl)
{

FillColor = Color.FromArgb (255, 102, 102)
}, 0, 1).Data "2n;

tal.AddCell (new CellStyle(csl)
{

FillColor
}, 1, 1) .Data

Color.FromArgb (252, 255, 102)
"1";

© 2024 MESCIUS inc. All rights reserved.

115

Document Solutions for Imaging 116

tal.AddCell (new CellStyle { FillColor = Color.White }, 1, 0);

// Calculate the layout of the table and the cells.
tal.ApplyCellConstraints() ;

/* Shift the view down. The Y-coordinate of the top right point (P1)
is zero, and all other coordinates are not negative.*/

var p = viewl.Transform.Transform(rectl.Pl);

viewl.ApplyOffset (null, 0f, -p.Y);

/* The bottom right point (P3) is at the far right,
which can be used to calculate the maximum width.*/
p = viewl.Transform.Transform(rectl.P3);

float wl = p.X;

/* The bottom left point (P2) is at the bottommost position,
which can be used to calculate the maximum height.*/

p = viewl.Transform.Transform(rectl.P2);

float hl = p.Y;

// Create second table.
var view2 = host.CreateView (0, 0);
var rect?2 = view2.CreateRect () ;

// Anchor the second table to top left corner.
rect2.AnchorTopLeft (null, 0, 0);

// Create an instance of TableRenderer for the second table.
var ta2 = new TableRenderer (g, rect2, FixedTableSides.Topleft,
rowCount: 2, columnCount: 4,
gridLineColor: Color.FromArgb(l62, 169, 177),
gridLineWidth: 2);

// Set text format.
var fmt = new TextFormat
{
FontName = "Calibri",
FontSize = 24,
FontSizeInGraphicUnits = true
bi
var fmtBold = new TextFormat (fmt)
{
FontBold = true
bi

// Set cell style.

var cs = new CellStyle
{
TextFormat = fmt,
PaddingAll = 6,

TextAlignment = TextAlignment.Center,

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 117

FixedWidth = false
}i

// Set default cell style.
ta2.DefaultCellStyle = new CellStyle(cs)
{

TextFormat = fmtBold,

FillColor = Color.FromArgb (234, 236, 240)
i

// Add cells to the second table with data.
ta2.AddCell (0O, 0, "Health Risk");
ta2.AddCell (0, 1, "Flammability");
taz2.AddCell (0, 2, "Reactivity");
ta2.AddCell (0, 3, "Special");

4

ta2.AddCell (cs, 1, 0, "Level 3");
ta2.AddCell (cs, 1, 1, "Level 2");
ta2.AddCell (cs, 1, 2, "Level 1");
ta2.AddCell (cs, 1, 3);

// Calculate the layout of the table and the cells.
ta2.ApplyCellConstraints();

float w2
float h2

rect2.Width;
rect2.Height;

// Create a third table, which will be larger and the outer table.
host.CreatevView(l, 1);
view3.CreateRect () ;

var view3

var rect3

// Anchor the third table to top left corner.
rect3.AnchorTopLeft (null, 5, 20);

// Create an instance of TableRenderer for the third table.
var ta3 = new TableRenderer (g, rect3, FixedTableSides.Topleft,
rowCount: 3, columnCount: 3,
gridLineColor: Color.FromArgb(l62, 169, 177),
gridLineWidth: 2);

const float CellPaddingX 6f;
const float CellPaddingyY 20f;
const float TextTableGap = 6f;

// Set the width of the columns.

columns = ta3.ColumnRects;

columns [0] .AppendMinWidth (CellPaddingX * 2 + wl);
columns[1].SetWidth (12) ;

columns [2] .AppendMinWidth (CellPaddingX * 2 + w2);

// Set the height of the row.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 118

ta3.RowRects[2] .AppendMinHeight (CellPaddingY * 2 + hl);

// Add cells to the table with data.
ta3.AddCell (new CellStyle(cs)
{
TextFormat = fmtBold,
Background = true
}, 0, 0, 1, 3, "Fire Diamond");

ta3.AddCell (cs, 1, 0, "Standard Representation");
ta3.AddCell (cs, 1, 2, "Tabular Representation");

// Add the first table to the outer table.
ta3.AddCell (new CellStyle
{

// Draw the first table.

CustomDraw = (g, tc) =>

{
float x = (tc.Width - wl) * 0.5f;
float y = (tc.Height - hl) * 0.5f;

g.Transform = Matrix3x2.CreateTranslation(x, y) * g.Transform;
tal.Render (qg) ;

Yoo 2, 0);

// Add the second table to the outer table.
ta3.AddCell (new CellStyle (cs)
{
TextFormat = fmtBold,
ParagraphAlignment = ParagraphAlignment.Center,
PaddingTop = CellPaddingy,
PaddingBottom = TextTableGap + h2 + CellPaddingy,
// Draw the second table.
CustomDraw = (g, tc) =>
{
var tl = tc.TextLayout;
float y = CellPaddingY + tl.ContentY + tl.ContentHeight + TextTableGap;
float x = (tc.Width - w2) * 0.5f;
g.Transform = Matrix3x2.CreateTranslation(x, y) * g.Transform;
ta2.Render (q);
}

}, 2, 2, "Risk levels of hazardous materials in this facility");

// Fill gaps in the table with empty regular cells.
ta3.AddMissingCells (1, 0, 2, 3);

ta3.AddCell (new CellStyle
{

FillColor Color.FromArgb (248, 249, 250),
Background = true
}I 1/ OI 2/ 3);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 119

// Draw the third table.
ta3.Render () ;

// Save the image.
bmp.SaveAsPng ("nested-table.png") ;

Limitations

A table created with TableRenderer is immutable. The number of rows and columns must be known before calling the
TableRenderer constructor. To split the table between multiple pages, calculate the layout for the huge table first, then
recreate the layout for a subset of rows to fit the available space on each page. Moreover, text having an “East Asian"
font and aligned vertically can only be displayed in cells with both FixedWidth and FixedHeight set to true in the

CellStyle.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 120

Work with Image Colors

Dslmaging provides a powerful API to handle various operations on image colors, such as setting the contrast level, adjusting levels of an image histogram,
working with color channels and color quantization. These features help to manipulate the color attributes of an image.

Adjust Color Intensity of an Image
DsImaging provides AutoContrast and AutoLevel methods in GrayscaleBitmap class and GeBitmap class respectively to improve the colors of an
image. These methods modify color intensities such that the maximum range of values (0-255) is fully covered. They also clip the extremely high and low values,

and correct the highlights and shadows of an image.

Original Image Image after AutoLevel

To improve the colors of an image:

1. Initialize a new instance of GcBitmap class and load the image in it.
2. Invoke the AutoLevel method of GcBitmap class.
3. Save the image with adjusted contrast.

C#
public void SetContrast ()
{
//Adjust contrast/level for GcBitmap
GcBitmap bmp = new GcBitmap ("Images/house.jpg");
bmp.AutoLevel (2f, 2f);
bmp.SaveAsJpeg ("autolevel house.jpg");

Back to Top

Adjust Image Histogram Levels

Levels adjustments are used to improve the tonal range and brightness levels of an image histogram. For this purpose, Dslmaging library provides AdjustLevels
method in both GeBitmap class and GrayscaleBitmap class.

Original Image Image after AdjustLevels

To adjust levels of an image histogram:

1. Initialize a new instance of GcBitmap class and load the image in it.
2. Invoke the AdjustLevels method.
3. Save the image with adjusted histogram in the desired format.

C#
public void SetBrightness|()

{
GecBitmap bmp = new GcBitmap ("Images/house.jpg");

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 121

bmp.AdjustLevels (0, 0x00646464, 0x00969696, Ox00FAFAFA);
bmp.SaveAsJpeg ("brighthouse.jpg") ;

Back to Top

Work with Color Channels

The basic elements of a digital image are the pixels, which in turn are made up of color channels, or the primary colors. For example, the RGB color model has
three separate color channels; one for red, one for green and one for blue. Dsimaging provides two methods, ExportColorChannel and ImportColorChannel in
the GeBitmap class. The ExportColorChannel method exports the specific color channel data from an image, whereas the ImportColorChannel method creates
a colored image based on the specified color channel data.

Original Image Blue Color Channel Green Color Channel

To export Blue and Green color channels of a colored image:

1. Create an instance of GcBitmap class and load a colored image in it.

2. To create a grayscale image for one of the color channel of a colored image, either invoke ToGrayscaleBitmap method or ExportColorChannel method
of GeBitmap class and pass the color channel as a parameter.

3. Save the image using the SaveAsJpeg method.
C#

using (var bmp = new GcBitmap ("Images/tudor.jpg"))

{
var gbmp = bmp.ToGrayscaleBitmap (ColorChannel.Blue);
var outBmp = gbmp.ToGcBitmap () ;
outBmp.SaveAsJIpeg ("Images/blue.jpg") ;

bmp.ExportColorChannel (gbmp, ColorChannel.Green) ;
gbmp.ToGcBitmap (outBmp, false);

outBmp.SaveAsJIpeg ("Images/green.jpg") ;

outBmp.Dispose() ;
gbmp .Dispose () ;

Original Image Red Color Channel

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 122

To create an image based on its Red color channel:

. Create an instance of GeBitmap class and load a colored image in it.

. Invoke the ToGrayscaleBitmap method of GeBitmap class to create a grayscale image based on Red color channel of the colored image.

. Clear the GcBitmap object representing the colored image by invoking the Clear method of GcBitmap class.

. Invoke the ImportColorChannel method of GeBitmap class to copy the red color channel data from the GrayScaleBitmap to colored image's bitmap.
. Save the image using the SaveAsJpeg method.

C#

A wWnN =

using (var bmp = new GcBitmap (Images/tudor.jpg))
using (var gbmpRed = bmp.ToGrayscaleBitmap (ColorChannel.Red))
{
bmp.Clear (Color.Black);
//Use the ImportColorChannel method for creating a color image from one of its grayscale channel
bmp.ImportColorChannel (gbmpRed, ColorChannel.Red);
bmp.SaveAsJpeg (Images/red.jpg) ;
}

Back to Top

Work with Color Quantization

Octree color quantization algorithm achieves color quantization by reducing the number of distinct colors used in an image while trying to
retain the visual appearance of the original image. The GenerateOctreePalette method of the GcBitmap class applies the octree color
quantization algorithm to a colored image for generating an octree color palette. This color palette is very useful in scenarios where the
device only supports limited number of colors, or when there is a need to reduce the color information of an image due to memory
limitations.

To apply Octree color quantization:

1. Load an image by instantiating the GcBitmap class.
2. Generate the Octree color palette using the GenerateOctreePalette method of GeBitmap class.
3. Create a new GIF image using the AppendFrame method of GeGifWriter class which accepts the octree palette as a parameter.

C#
using (GcBitmap bmp = new GcBitmap ("Images/tudor.jpg"))
{
uint[] pal = bmp.GenerateOctreePalette (10);
using (GcGifWriter gw = new GeGifWriter ("Images/test.gif™))

{
gw.AppendFrame (bmp, pal, DitheringMethod.FloydSteinberg);

Back to Top

For more information about working with image colors using DsImaging, see Dsimaging sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-imaging/demos/basics/effects/auto-levels/code-cs

Document Solutions for Imaging 123

Transparency Mask

Dslmaging allows you to use transparency masks for all drawing and filling operations.

Apply Transparency Mask

Transparency masks are used in imaging to hide some portion of the image while retaining rest of the image. The
mask is either an image that already has transparency set on it or it is a bilevel/grayscale image which can serve the
purpose because in that case, the black or white pixels are used as a mask.

In Dslmaging, the transparency mask can be defined using BilevelBitmap or GrayscaleBitmap class. The image to be
used as a transparency mask is loaded in a GcBitmap instance and converted to a BilevelBitmap or GrayscaleBitmap by
using the ToBilevelBitmap or ToGrayscaleBitmap methods of the GeBitmap class. To use the defined mask, you
need to draw the image on which the mask is to be applied on the target GcBitmap and then apply a mask using

the ApplyTransparencyMask method of the GeBitmap class.

Base Image Mask

Output Image

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 124

To set the transparency mask:

1. Initialize an instance of the GcBitmap class to load the semi-transparent image which is to be applied as a
mask.

2. Convert this GeBitmap to GrayscaleBitmap which will be used as the image mask, using
the ToGrayscaleBitmap method of the GecBitmap class.

3. Initialize another instance of the GcBitmap class to load the image on which the transparency mask is to be
applied.

4. Apply the transparency mask to the resulting bitmap using the ApplyTransparencyMask method of the
GcBitmap class.

5. Convert the resulting bitmap to an opaque image with specified background color using
the ConvertToOpaque method of the GcBitmap class.

C#

//Initialize bitmap for generating mask image
GcBitmap mask = new GcBitmap ("logo.png");

//Draw image to which the tranparency mask has to be applied
GcBitmap bmp = new GcBitmap ("tudor.jpg");

//Define the transparency mask using mask image

GrayscaleBitmap grayscaleMask = mask.ToGrayscaleBitmap (ColorChannel.Blue, true);

//Bpply the transparency mask to the result bitmap
bmp.ApplyTransparencyMask (grayscaleMask) ;

//Convert the result bitmap to opaque
bmp.ConvertToOpaque (Color.Beige) ;

//Save the result bitmap to save transparent image
bmp.SaveAsJpeg ("TransparentImg.jpg");

Back to Top

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 125

You can use the TransparencyMaskBitmap property of BitmapRenderer class to specify a transparency mask that
will be used for any subsequent drawing on the bitmap. Pixels in the mask with value 0 are fully opaque and will
completely mask any drawing (meaning, the pixels of the target bitmap will remain unchanged). Pixels in the mask
with value 255 are fully transparent, meaning that any drawing will have the same effect as if there was no mask. Pixels
with values between 0 and 255 will modify the transparency of the pixels being drawn according to their value.

2] Note: The transparency mask bitmap must be of the same pixel size as the target bitmap.

With Transparency Mask Without Transparency Mask

The following example shows how to set the transparency mask and prevent opacity while working with overlapping
images:

C#

// Prepare a linear gradient transparency mask,

// from 0 (transparent) to 255 (opaque):

using var mask = new GcBitmap (500, 500, true);

using var gmask = mask.CreateGraphics();

var grad = new LinearGradientBrush (Color.Black, Color.White);
gmask.FillRectangle (new RectangleF (0, 0, mask.Width, mask.Height), grad);

// Convert to GrayscaleBitmap to be used as Renderer.TransparencyMaskBitmap:

using var gsb = mask.ToGrayscaleBitmap();

// Fill target bitmap with yellow background:
using var bmp = new GcBitmap (500, 500, false);
using var g = bmp.CreateGraphics (Color.Yellow) ;

// Apply the transparency mask (comment out to see the results without the mask):

g.Renderer.TransparencyMaskBitmap = gsb;

// Fill 3 circles, note how the fill gradually changes

// from transparent to opaque (left to right) along with the gradient:
g.FillEllipse (new RectangleF (100, 20, 300, 300), Color.Red);
g.FillEllipse (new RectangleF (180, 180, 300, 300), Color.Green);
g.FillEllipse (new RectangleF (20, 180, 300, 300), Color.Blue);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 126

bmp.SaveAsPng ("transpmask.png") ;

Remove Transparency

You can check whether an image contains any transparent pixels by using the HasTransparentPixels method of
GcBitmap class. It scans the image and returns true if there are any pixels with the alpha channel value different from
255. You can also convert images with transparent pixels to opaque with a specified solid background color by using
the ConvertToOpaque method of the GeBitmap class, as shown in the below example code:

C#

// Initialize a GcBitmap and load a transparent image into it:
using GcBitmap origBmp = new GcBitmap ("Tranparent.png");

// Check for transparent pixels and convert to opaque if any:
if (origBmp.HasTransparentPixels())
{
origBmp.ConvertToOpaque (Color.LightBlue) ;
origBmp.SaveAsJpeg ("NotTransparent.jpg") ;
}
else

Console.WriteLine ("No transparent pixels");

When drawing semi-transparent graphic objects, usually the resulting color of a pixel is a combination of the target
bitmap pixel's color and the color of the graphic object's pixel. But if the BackgroundBitmap is set on the
BitmapRenderer, pixels of that bitmap will be used instead of the target bitmap's pixels when determining the
resulting color (the BackgroundBitmap must have the same pixel size as the target bitmap). Background bitmaps are
used to support Isolated and Knockout groups when rendering PDFs to images.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 127

The following example shows the use of BackgroundBitmap to reproduce isolated and knockout groups rendering
from the PDF specification:

Example Title

// The target bitmap will be 1000x10000 pixels containing 4 demo quadrants:
using var bmp = new GcBitmap (500 * 2, 500 * 2, false, 96f, 96f);

// The spectrum image used for the backdrop:

using var bmpl = new GcBitmap ("spectrum-pastel-500x500.png") ;

using var bmpBackdrop = new GcBitmap (500, 500, false, 96f, 96f);
using var bmpInitial = new GcBitmap (500, 500, false, 96f, 96f);
using var gB = bmpBackdrop.CreateGraphics () ;

using var gI = bmpInitial.CreateGraphics{();

gB.Renderer.Aliased = true;

gB.Renderer.BlendMode = BlendMode.Multiply;
gl.Renderer.Aliased = true;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

gIl.Renderer.BlendMode = BlendMode.Multiply;

// Isolated, Knockout
bmpBackdrop.BitBlt (bmpl, 0, 0);
bmpInitial.Clear (Color.Transparent);

gB.Renderer.BackgroundBitmap = bmpInitial;

gB.FillEllipse (new RectangleF (50, 50, 250, 250), Color.LightGray):;
gB.FillEllipse (new RectangleF(ZOO 50, 250, 250), Color.LightGray);
gB.FillEllipse (new RectangleF (50, 200, 250, 250), Color.LightGray);
gB.FillEllipse (new RectangleF (20

bmp.BitBlt (bmpBackdrop, 0, 0);

// Isolated, Non-knockout
gIl.FillEllipse (new RectangleF
gIl.FillEllipse (new RectangleF (200, 50, 250, 250), Color.LightGray):;

(50, 50, 250, 250), Color.LightGray);
(

gl.FillEllipse (new RectangleF (50, 200, 250, 250), Color.LightGray);
(

gl.FillEllipse (new RectangleF (200, 200, 250, 250), Color.LightGray):;

bmpBackdrop.BitBlt (bmpl, 0, 0);
bmpBackdrop.AlphaBlend (bmpInitial, 0, 0);
bmp.BitBlt (bmpBackdrop, 500, 0);

// Non-isolated, Knockout

bmpBackdrop.BitBlt (bmpl, 0, 0);

bmpInitial .BitBlt (bmpl, 0, 0);

gB.FillEllipse (new RectangleF (5 50, 250, 250), Color.LightGray):;
gB.FillEllipse (new RectangleF(ZOO 50, 250, 250), Color.LightGray):;
gB.FillEllipse (new RectangleF (5 200, 250, 250), Color.LightGray):;

gB.FillEllipse (new RectangleF(200, 200, 250, 250), Color.LightGray):;

bmp.BitBlt (bmpBackdrop, 0, 500);

// Non-isolated, Non-knockout:
bmpBackdrop.BitBlt (bmpl, 0, 0);
gB.Renderer.BackgroundBitmap = null;
gB.FillEllipse (new RectangleF (50, 50, 250, 250), Color.LightGray):;
gB.FillEllipse (new RectangleF (200, 50, 250, 250), Color.LightGray):;

(5
(

gB.FillEllipse (new RectangleF (50, 200, 250, 250), Color.LightGray);
(

gB.FillEllipse (new RectangleF (200, 200, 250, 250), Color.LightGray):;

bmp.BitBlt (bmpBackdrop, 500, 500);

// Adornments:

using var g = bmp.CreateGraphics{();

g.DrawLine (0, 500, 1000, 500, new Pen(Color.Black));
g.DrawLine (500, 0, 500, 1000, new Pen(Color.Black));
var tf = new TextFormat() { FontSize = 14 };

g.DrawString ("Isolated, Knockout", tf, new RectangleF (0, 460, 500, 30),

TextAlignment.Center, ParagraphAlignment.Center, false);
g.DrawString ("Isolated, Non-knockout", tf, new RectangleF (500, 460,
TextAlignment.Center, ParagraphAlignment.Center, false);

g.DrawString ("Non-isolated, Knockout", tf, new RectangleF (0, 960, 500,

TextAlignment.Center, ParagraphAlignment.Center, false);

g.DrawString ("Non-isolated, Non-knockout", tf, new RectangleF (500, 960,

© 2024 MESCIUS inc. All rights reserved.

0, 200, 250, 250), Color.LightGray);

128

30),

Document Solutions for Imaging 129

TextAlignment.Center, ParagraphAlignment.Center, false);

// Done:
bmp.SaveAsPng ("isolated-knockout.png");

Back to Top
Z] Note: Please dispose off the BackgroundBitmap and TransparencyMaskBitmap bitmaps after using them.

Limitation

The bitmaps assigned to the BackgroundBitmap or TransparencyMaskBitmap properties must be of the same pixel
size as the target bitmap of the current GeBitmapGraphics.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 130

Work with Graphics

Graphics are visual elements that can be displayed in the form of different shapes, lines, curves or images.
Additionally, graphics can be composed of paths as well. A graphic path is a sequence of connected lines and curves
which work as a single graphics object. Dsimaging allows you to draw these shapes and graphics path using
GcGraphics class methods.

In this section, you learn how to work with the following:

Draw and Fill Shapes

Clip Region

Align Image

Add Matrix Transformation
Add Transparency Layer
Interpolation Mode

Add Shadow

Add Glow and Soft Edges

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

Draw and Fill Shapes

131

DsImaging provides various drawing methods in GeGraphics class to draw graphic elements (shapes) on a drawing surface using an object
of GeBitmapGraphics class. These shapes can be simple shapes, such as line, rectangle, etc. or complex shapes, such as graphics path, which
can be any shape created using a sequence of connected lines and curves. All these shapes are drawn using draw methods available in the

GcGraphics class. These draw methods accept a color or a Pen object as a parameter.

Moreover, DsImaging allows you to fill the shapes using fill methods available in the GeGraphics class. These methods fill the shapes using a
color or a brush, which can be either SolidBrush, LinearGradientBrush, RadialGradientBrush, or HatchBrush. An instance of a required brush can

be passed as a parameter to the fill methods.

Shape Draw methods Fill methods
Line Drawline -

Rectangle DrawRectangle FillRectangle
Rounded rectangle DrawRoundRect FillRoundRect
Ellipse DrawtEllipse FillEllipse
Polygon DrawPolygon FillPolygon
Path DrawPath FillPath
Shapes Graphics Path

PATH

Draw Shapes
To draw a rectangle, polygon, and cylinder:

1. Initialize the GcBitmap class.

GRAPHICS

2. Create a drawing surface to draw shapes using CreateGraphics method of the GeBitmap class which returns an instance of the

GcBitmapGraphics class.

3. Define Pen for drawing shapes using the Pen class.

4. Draw a rectangle and a pentagon using DrawRectangle and DrawPolygon methods of GcGraphics class.

5. Draw a cylinder with the help of line and ellipse using DrawLine and DrawEllipse methods of GcGraphics class.
C#

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap (500, 500, true);

//Create the graphics for the Bitmap
GecBitmapGraphics g = origBmp.CreateGraphics (Color.White);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

//Define the start point and pen for drawng shapes

Pen shapePen = new Pen(Color.Black, 2);

//Draw rectangle

//Start point for rectangle i.e. the upper left corner

PointF startPoint = new PointF (50, 50);

RectangleF rectangleBounds = new RectangleF (startPoint,

new SizeF (200, 125));

g.DrawRectangle (rectangleBounds, shapePen);

//Draw Pentagon

PointF center Pent = new PointF (125, 337);

//Defining distance of side from center and angle to start at
float radius = 100, startAngle = (float)-Math.PI / 2;

//Number of sides for polygon
int n = 5;
PointF[] pts = new PointF[n];

//Defining the connecting points for the sides calculated

//using the radius and start angle
for (int 1 = 0; 1 < 5; ++1)
pts[i] = new PointF(center_ Pent.X +

(float) (radius * Math.Cos(startAngle + 2 * Math.PI * i / n)),

center Pent.Y +

(float) (radius * Math.Sin(startAngle + 2 * Math.PI * i / n)));

g.DrawPolygon (pts, shapePen);

//Draw Cylinder
// Horizontal radius for ellipse
float radX = 87.5f;

// Vertical radius for ellipse
float radY = 37.5f;

//Cylinder Height
float height = 250;

//Center point for cylinder shape
PointF center cyl = new PointF (375, 250);

//Rendering two ellipses and two lines to render cylinder shape
//Rectangle bounds/startpoint/end point are calculated based

//on the center point of the shape

g.DrawEllipse (new RectangleF (center cyl.X - radX,

center cyl.Y - height / 2, radX * 2, radY * 2), shapePen);
g.DrawEllipse (new RectangleF (center cyl.X - radX,

center cyl.Y + height / 2 - radY * 2, radxX * 2,

radY * 2), shapePen);

g.DrawLine (new PointF (center cyl.X - radX,

center cyl.Y - height / 2 + rady),

new PointF(center cyl.X - radX, center cyl.Y +

height / 2 - radY), shapePen);

g.DrawlLine (new PointF (center cyl.X + radX,
center cyl.Y - height / 2 + radY), new PointF(center cyl.X +
radX, center cyl.Y + height / 2 - radY), shapePen);

//Save the image rendering different shapes

origBmp.SaveAsJpeg ("DrawShape.jpeg") ;

© 2024 MESCIUS inc. All rights reserved.

132

Document Solutions for Imaging 133

Back to Top

Fill Shapes

To fill different shapes with different types of brushes:

1. Initialize an instance of SolidBrush class to fill rectangle with a solid color.

2. Apply the background color to the rectangle using FillRectangle method of GcGraphics class which accepts the instance of SolidBrush
as its parameter.

3. Similarly, fill the remaining shapes as well by passing the instance of the required brush as a parameter to the corresponding method.

C#

//Initialize an instance of SolidBrush class to fill
//rectangle with solid color

SolidBrush solidBrush = new SolidBrush (Color.LightPink);
g.FillRectangle (rectangleBounds, solidBrush);

//Initialize an instance of LinearGradientBrush class to

//fill pentagon with linear gradient

LinearGradientBrush linearBrush = new
LinearGradientBrush (Color.Red, Color.Green);

g.FillPolygon (pts, linearBrush);

//Initialize an instance of HatchBrush class to fill
//cylinder top ellipse with hatch style

HatchBrush hatchBrush = new HatchBrush (HatchStyle.Diagonal) ;
g.FillEllipse (topEllipse, hatchBrush);

//Initialize an instance of RadialGradientBrush class
//to fill bottom ellipse with radial gradient
RadialGradientBrush radialBrush = new
RadialGradientBrush (Color.Blue, Color.White);
g.FillEllipse (bottomEllipse, radialBrush);

//Save the image rendering different shapes
origBmp.SaveAsJpeqg ("FillShape.jpeg");

Back to Top

Draw and Fill Path

To draw a graphics path:

. Create a graphics path using CreatePath method of the GeGraphics class which returns an instance of IPath interface.

. Create a new figure for the path starting at a specified point using BeginFigure method of the IPath interface.

. Add arcs and lines to the figure using AddArc and AddLine methods of the IPath interface for completing a graphics path.

. Close the figure using EndFigure method of the IPath interface to complete the graphics path.

. Return the graphics path.

. Draw the graphics path using the DrawPath method of GcGraphics class which accepts a specified pen as its parameter.

. Apply background color to the path using FillPath method of GcGraphics class which accepts specified color as its parameter.

C#

Nouh wNn =

//Define and return the graphic path
public IPath CreatePath(RectangleF rec, GcGraphics g, SizeF sz)
{
var path = g.CreatePath();
path.BeginFigure (new PointF (rec.X + 50, rec.Y + rec.Height));

path.AddArc (new ArcSegment () { Point = new
PointF(rec.X + 250, rec.Y + 50), RotationAngle = 30,
SweepDirection = SweepDirection.Clockwise, Size = sz });

path.AddLine (new PointF(rec.X + 250, rec.Y + 40));

path.AddLine (new PointF (rec.X + 325, rec.Y + 100))

path.AddLine (new PointF (rec.X + 250, rec.Y + 160));
(+ 250, rec.Y + 150))

’

’

path.AddLine (new PointF (rec.X

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

path.AddArc (new ArcSegment () { Point = new
PointF(rec.X + 50, rec.Y + rec.Height),
RotationAngle = 30, SweepDirection =
SweepDirection.CounterClockwise, Size = sz });
path.EndFigure (FigureEnd.Closed) ;

return path;

//Create an image using the Graphic Path
public void DrawPath ()
{
//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap (640, 530, true);

//Create the graphics for the Bitmap
GcBitmapGraphics g = origBmp.CreateGraphics (Color.White) ;

//Define the start point and pen for drawing shapes
Pen shapePen = new Pen(Color.Black, 2);

//Size of the graphics path image
SizeF sz = new SizeF (500, 500);

RectangleF rectl = new RectangleF (0, 0, 500, 400);
var pathl = CreatePath(rectl, g, sz);

g.DrawPath (pathl, shapePen); // Draw graphic path
g.FillPath (pathl, Color.Blue); // Fill graphic path

RectangleF rect2 = new RectangleF (0, 50, 500, 400);
var path2 = CreatePath(rect2, g, sz);

g.DrawPath (path2, shapePen);

g.FillPath(path2, Color.Orange);

RectangleF rect3 = new RectangleF (0, 100, 500, 400);
var path3 = CreatePath(rect3, g, sz);

g.DrawPath (path3, shapePen);

g.FillPath(path3, Color.Green);

//Define TextFormat to render text in the image
TextFormat tf = new TextFormat
{
Font = Font.FromFile (Path.Combine ("Resources",
"Fonts", "times.ttf")),
FontSize = 42
}i

g.DrawString ("GRAPHICS", tf, new PointF (325, 95));
g.DrawString ("PATH", tf, new PointF (325, 155));

//Save the image rendering different shapes
origBmp.SaveAsJpeg ("GraphicPath.jpeg") ;
Back to Top

Antialiasing

134

DsImaging, by default, renders the graphics in fast antialiasing mode that gives the good quality result with fast rendering. However, if you

want to render the graphics in slow antialiasing mode to get the highest quality while compromising on the speed, you can set

the SlowAntialiasing property of BitmapRenderer class to true. Similarly, you can also render the graphics without antialiasing which gives

you poor quality but very fast rendering, by setting the Aliased property to true.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 135

In addition, BitmapRenderer class also provides ForceAntialiasingForText property which when true, forces the text layout to draw with
antialiasing even if the Aliased property is set to true. This is generally required in scenarios where graphics are required to be aliased but
text needs to be antialiased. For instance, in the case of rendering barcodes with digits, barcodes should be aliased to make them crisp and
readable by devices while digits under the barcodes needs to be drawn with better quality.

To render a text with slow antialiasing on an image:

1. Initialize the GcBitmap class.
2. Create a drawing surface using CreateGraphics method of the GcBitmap class which returns an instance of the GeBitmapGraphics class.
3. Create an instance of TextLayout class using the CreateTextLayout method.
4. Set the SlowAntialiasing property to true to render a good quality text with fast speed.
C#

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap (1000, 500, true);

//Create the graphics for the Bitmap
GcBitmapGraphics g = origBmp.CreateGraphics (Color.White) ;

//Render using multithreaded mode
g.Renderer.Multithreaded = true;

var text = @"Different (anti)aliasing modes of rendering
text are no antialiasing, fast antialiasing
and slow antialiasing.";

var tfcap = new TextFormat ()
{
Font = Font.FromFile (Path.Combine ("Resources", "Fonts",
"timesbd.ttf")),
FontSize = 16,
}i

var tl = g.CreateTextLayout () ;
tl.TextAlignment = TextAlignment.Justified;
//Render text without antialiasing
//origBmp.Renderer.Aliased = true;

//Render text with slow antialiasing
origBmp.Renderer.SlowAntialiasing = true;

tl.AppendLine ("Fast antialiasing (default quality)", tfcap);
tl.Append(text, tfcap):;

g.DrawTextLayout (tl, new PointF (50, 200));

//Save the image depicting different antialiasing modes
origBmp.SaveAsJpeg ("Antialiasing.jpeg");

Back to Top

For more information about drawing and filling geometric shapes using DsImaging, see DsImaging sample browser.

[% Note: For rendering large or complex text and graphics, you can use Skia library. For more information about the library and its usage,
see Render using Skia Library.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-imaging/demos/basics/drawing/shapes/code-cs

Document Solutions for Imaging 136

Clip Region

A clip region refers to a specific part of an image and is defined to limit the drawing operations for an image to a
specific part of the image.

In Dslmaging, the clip region can be created using the CreateClipRegion method of the GeBitmapGraphics class
which takes a Rectangle or a GraphicsPath as a parameter. The defined clip region is applied to the image using

the PushClip method which limits the drawing operations to the clip region. After the required drawing operations
are done, you can use the PopClip method to remove the clip region and make the complete image surface available
for any further drawing operations.

To clip an image:

Create an instance of GcBitmap.

Load an image into the GcBitmap instance.

Define a clip rectangle for adding text.

Add text to the rectangle.

Pass the rectangle as a parameter in PushClip method of the GcBitmapGraphics class.

C#

ukhwnn =

var backColor = Color.FromArgb (unchecked ((int)0xff0066cc)) ;
Color.FromArgb (unchecked ((int) Oxffffcc00)) ;

var foreColor

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

float cw = 450, ch = 300, pad = 10, bord = 4;
int pixelWidth = 1024, pixelHeight = 1024;

GcBitmap origBmp = new GcBitmap (pixelWidth, pixelHeight, true);
var path = Path.Combine ("Resources", "Images", "tudor.jpg"):;

origBmp.Load (path);

GcBitmapGraphics g = origBmp.CreateGraphics();

RectangleF clipRc = new RectangleF (pixelWidth - cw - pad,
pad, cw, ch);

using (g.PushClip (clipRc))
{
g.FillRectangle (clipRc, Color.Blue);
g.DrawString ("This is a beautiful home",
new TextFormat ()

{

Font = Font.FromFile (Path.Combine ("Resources",
"Fonts", "times.ttf")),
FontSize = 16,
ForeColor = foreColor
by
clipRc
) ;

//Save the image with clipped region
origBmp.SaveAsJpeg ("ClipImageTest.jpeg") ;

Back to Top

For more information about implementation of clipping using Dslmaging, see DsiImaging sample browser.

Z] Note: For rendering large or complex text and graphics, you can use Skia library. For more information about the

library and its usage, see Render using Skia Library.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-imaging/demos/basics/drawing/push-clip/code-cs

Document Solutions for Imaging

Align Image

Dslmaging provides you an option to set the alignment of an image within its container using the ImageAlig
This class provides you an option to center, scale, or stretch an image with respect to the bitmap.

To align an image at the center of its container:

1. Initialize the GcBitmap class.
2. Create a drawing surface to draw shapes using CreateGraphics method of the GeBitmap class which

an instance of the GeBitmapGraphics class.

138

n class.

returns

3. Invoke the Drawlmage method of GcGraphics class to draw an image and set the image alignment to center

using the ImageAlign class to pass it as a parameter to the method.
C#

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap (1000, 1000, true);

//Create the graphics for the Bitmap
GcBitmapGraphics g = origBmp.CreateGraphics (Color.AliceBlue) ;

//Get the image and define the image rectangle

var image = Image.FromFile (Path.Combine ("Resources", "Images", "tudor.jpg")):

var imgRec = new Rectangle (50, 50, image.Width + 100, image.Height + 100);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 139

g.FillRectangle (imgRec, Color.Gray);

//Draw the image with "CenterImage" alignment mode
g.DrawImage (image, imgRec, null, ImageAlign.CenterImage);

//Save the image

origBmp.SaveAsJpeg ("AlignImageCenter.jpeg");

] Note: For rendering large or complex text and graphics, you can use Skia library. For more information
about the library and its usage, see Render using Skia Library.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 140

Apply Matrix Transformation

Transformation plays a vital role when it comes to graphics. The purpose of using transformation in graphics
is to reposition the graphics and alter their orientation and size. It may involve a sequence of operations such as,
translation, scaling, rotation, etc..

Dslmaging supports graphics transformation through Transform property of the GeBitmapGraphics class which is of
type Matrix3x2. The Matrix3x2 struct represents a 3x2 matrix and is a member of System.Numerics namespace. The
transformations are applied in the order reverse to which they are added to the matrix.

To apply matrix transformation:

1. Initialize the GcBitmap class.

2. Create a drawing surface using CreateGraphics method of the GeBitmap class which returns an instance of
the GeBitmapGraphics class.

3. Draw a rectangle using DrawRectangle method and apply the background color using FillRectangle
method of the GeBitmapGraphics class.

4. Define the text to be rendered in a rectangle.

5. Add text to the rectangles using DrawString method of the GecBitmapGraphics class

6. Create a transformation matrix with different transformation types. For example, create rotation, translation,
and scaling matrix using CreateRotation, CreateTranslation and CreateScale method of the Matrix3x2 class
respectively.

7. Apply the transformation matrix using the Transform property.
Note that the sequence of transformations applied to the text is done in reverse order, which means first
is scaling followed by translation and rotation.

C#

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap (1024, 1024, true);

//Create the graphics for the Bitmap
GcBitmapGraphics g = origBmp.CreateGraphics (Color.White);

//Define text to be rendered in box/rectangle
const string baseTxt = "Text drawn at (10,36) in a 4\"x2\" box";

var Inch = origBmp.DpiX;

// Render the image with tranformed text

// Transforms are applied in order from last to first.]

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 141

var rotate = Matrix3x2.CreateRotation((float) (-70 * Math.PI) / 180f);
var translate = Matrix3x2.CreateTranslation(Inch * 3, Inch * 5);
var scale = Matrix3x2.CreateScale(0.7f);

g.Transform =
rotate *
translate *
scale;

var box = new RectangleF (10, 36, origBmp.DpiX * 4, origBmp.DpiY * 2);
g.FillRectangle (box, Color.FromArgb (80, 0, 184, 204));
g.DrawRectangle (box, Color.FromArgb (0, 193, 213), 1);
box.Inflate (-6, -6);
g.DrawString (baseTxt, new TextFormat ()
{
Font = Font.FromFile (Path.Combine ("Resources", "Fonts",
"times.ttf")),
FontSize = 14,
}y
box) ;

//Save the image rendering different shapes
origBmp.SaveAsJpeg ("MatrixTransform. jpeg") ;

For more information about using transformation matrix in DsImaging, see DsImaging sample browser.

] Note: For rendering large or complex text and graphics, you can use Skia library. For more information
about the library and its usage, see Render using Skia Library.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-imaging/demos/basics/drawing/graphics-transforms/code-cs

Document Solutions for Imaging 142

Add Transparency Layer

Dslmaging allows you to add a transparency layer to your drawings and hence lets you manipulate a group of
drawing operations.

The GcGraphics class provides PushTransparencylLayer method that allows you to add new layers to the GcGraphics
object which receives all subsequent drawing operations until the PopTransparencyLayer method is called. On
calling the PopTransparencylLayers method, the contents of the layers are merged into the drawing surface.

When pushing a transparency layer, you can specify the bound of new layer so that the subsequent operations are
performed inside the specified bounds only. When bounds are not specified, bounds of the original drawing surface
are considered as bounds of the layer and all the layer operations take effect on the whole surface.

You can also pass opacity of the transparency layer as a parameter of PushTransparencyLayer method. The opacity of
layer gets composited to the drawing surface when the layer is popped out.

The example below uses GcGraphics to create a drawing and then merges additional operations using a transparency
layer. Similarly, transparency layers can be used with the following classes derived from GcGraphics class:
GcPdfGraphics, GecBitmapGraphics, GeSkiaGraphics, GeSvgGraphics, GeD2DBitmapGraphics,
GcWicBitmapGraphics.

C#

// Draw a figure with layer using GcGraphics

static void DrawFigure (GcGraphics qg)

{
const float DegToRad = (float) (Math.PI / 180);
var m = Matrix3x2.CreateScale(g.Resolution / 48f);
m = Matrix3x2.CreateSkew (DegToRad * 30, 0) * m;
m = Matrix3x2.CreateRotation (DegToRad * 30) * m;
g.Transform = m;

var rect = new RectangleF (50, 50, 150, 100);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

g.FillRectangle (rect, new HatchBrush (HatchStyle.ZigZag)
{

BackColor = Color.Yellow,

ForeColor = Color.Purple

)

143

g.DrawRectangle (rect, new GrapeCity.Documents.Drawing.Pen(Color.LightGreen, 6f));

//Define bounds and push an opaque transparency layer
var clipRect = new RectangleF (70, 50, 110, 100);
g.PushTransparencylayer (clipRect, 0.5f);

g.FillRectangle (rect, Color.Green);
rect.Height -= 60;
rect.Y += 30;

g.DrawRectangle (rect, new GrapeCity.Documents.Drawing.Pen (Color.Red,

var tl = g.CreateTextLayout();
tl.DefaultFormat.ForeColor = Color.White;
tl.DefaultFormat.FontSize = 38;
tl.DefaultFormat.FontSizeInGraphicUnits = true;
tl.DefaultFormat.FontName = "Tahoma";
tl.MaxWidth = 150;

tl.TextAlignment = TextAlignment.Center;
tl.Append("Hello World!"™);

g.DrawTextLayout (t1l, new PointF (50, 50));

// merge the transparency layer
g.PopTransparencylLayer () ;

6£));

Limitations: Browsers such as Google Chrome and Mozilla Firefox may not notice the changes in the SVG image
generated from the contentBounds parameter passed to the GcSvgGraphics.PushTransparencylLayer method.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 144

Interpolation Mode

Sometimes, you might want to draw an image using nearest-neighbor interpolation mode without resizing the image.
The interpolation mode influences the way images stretch and shrink. The interpolation modes try to attain the best
estimation of the intensity of a pixel based on neighboring pixel values on a proximity basis. To stretch an image, each
pixel in the original image must be mapped to a group of pixels in the larger image. However, to shrink an image,
groups of pixels in the original image must be mapped to single pixels in the smaller image. Dslmaging supports
interpolation modes to allow you to control interpolation mode in a common way for all implementations

of GeGraphics class.

The GcGraphics class provides InterpolationMode property and IsinterpolationModeSupported method, which are
used to control interpolation mode in a common way for all graphics. The InterpolationMode enumeration defines
following interpolation modes:

® NearestNeighbor

® Llinear

e Cubic

® Downscale

Original NearestNeighbor Linear
Image

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 145

The following table lists the interpolation modes supported by different GcGraphics implementations.

GcGraphics Implementations NearestNeighbor Linear Cubic Downscale
GcPdfGraphics Yes No No No
GcBitmapGraphics Yes Yes Yes Yes
GcSvgGraphics Yes Yes Yes No
GcSkiaGraphics Yes Yes Yes No
GcWicBitmapGraphics Yes Yes No No
GcD2DBitmapGraphics Yes Yes No No

The following are the usage examples of the InterpolationMode enumeration in different GcGraphics
implementations:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 146

® The current value of the InterpolationMode property in GcGraphics class affects the way bitmap images are
drawn by the Drawlmage method in GcGraphics class.

® The current value of the InterpolationMode property in BitmapRenderer class affects the way bitmap images
are drawn by the DrawBitmap method in BitmapRenderer class.

® The Resize method of GeBitmap class accepts InterpolationMode as a parameter, which affects the resulting
GcBitmap image.

Refer to the following example code to enlarge a small image using different interpolation modes:

C#

public class EnlargeQRCode
{

public GcBitmap GenerateImage (Size pixelSize, float dpi, bool opaque, stringl[]
sampleParams = null)
{
// Create and clear the target bitmap.
var targetBmp = new GcBitmap (pixelSize.Width, pixelSize.Height, opaque, dpi,
dpi) ;
targetBmp.Clear (Color.Transparent) ;

const int fontSize = 16;
var xpad = (int) (dpi * .5f);
var ypad = (int) (dpi * .7f);

// Initialize Font.
TextFormat tf = new TextFormat

{
Font = GCTEXT.Font.FromFile (Path.Combine ("Resources", "Fonts",

"times.ttf")),
FontSize = fontSize,

}i

// Load the image.
using var origBmp = new GcBitmap () ;
using (var stm = File.OpenRead (Path.Combine ("Resources", "ImagesBis",
"QRCode-57x57.png")))
origBmp.Load (stm) ;

// Match the opaqueness of the original bitmap and the target.
origBmp.Opaque = targetBmp.Opaque;

var ip = new Point (xpad, ypad);

// Draw the original image at its original size.
targetBmp.BitBlt (origBmp, ip.X, ip.Y);
using (var g = targetBmp.CreateGraphics (null))
g.DrawString ($"+«— Original image ({origBmp.PixelWidth} by
{origBmp.PixelHeight} pixels)", tf, new PointF(xpad * 2 + origBmp.Width, ip.Y));
ip.Y += origBmp.PixelHeight + ypad;

// Enlarge the original small image by a factor of 6.

var £ = 6;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 147

int twidth = origBmp.PixelWidth * f;
int theight = origBmp.PixelHeight * f;

// Enlarge and draw four copies of the image using the four different
available interpolation modes.
using (var bmp = origBmp.Resize (twidth, theight,
InterpolationMode.NearestNeighbor))
targetBmp.BitBlt (bmp, ip.X, ip.Y);
drawCaption ("InterpolationMode.NearestNeighbor", ip.X, ip.Y + theight);

using (var bmp = origBmp.Resize (twidth, theight, InterpolationMode.Cubic))
targetBmp.BitBlt (bmp, ip.X + twidth + xpad, ip.Y):
drawCaption ("InterpolationMode.Cubic", ip.X + twidth + xpad, ip.Y + theight);

ip.Y += theight + ypad;

using (var bmp = origBmp.Resize (twidth, theight, InterpolationMode.Linear))
targetBmp.BitBlt (bmp, ip.X, ip.Y);
drawCaption ("InterpolationMode.Linear", ip.X, ip.Y + theight);

using (var bmp = origBmp.Resize (twidth, theight,
InterpolationMode.Downscale))
targetBmp.BitBlt (bmp, ip.X + twidth + xpad, ip.Y):
drawCaption ("InterpolationMode.Downscale", ip.X + twidth + xpad, ip.Y +
theight) ;

void drawCaption(string caption, float x, float y)
{
using var g = targetBmp.CreateGraphics (null);
g.DrawString (caption, tf, new PointF(x, vy));
}

return targetBmp;

= Note: The interpolation mode only affects the way raster images are drawn on a graphic, i.e., the result of
Drawlmage method and raster image resizing. Interpolation mode does not affect any other graphics operations.
In particular, if a PDF is saved to an image format, the only items affected by interpolation mode would be raster
images embedded in the original PDF, if they exist.

When a raster image is drawn on an SVG graphic (a vector graphic), the original raster image is not modified;
instead, the specified interpolation mode is saved in the SVG markup as a hint to viewers on how to show the
image, so it is not directly affected by the interpolation mode. The hint may be ignored, depending on the viewer.
Graphics on a PDF are also vector graphics, but these graphics only support NearestNeighbor mode of
InterpolationMode, meaning that raster images embedded in a PDF are always shown by PDF viewers using that
mode.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 148

Add Shadow

Dslmaging provides ApplyGaussianBlur and ToShadowBitmap methods in GrayscaleBitmap class. These methods
make the process of drawing an image with a shadow easier and more straightforward. The ApplyGaussianBlur
method accepts the borderColor, radius, and borderMode arguments. The ToShadowBitmap method simplifies
moving a transparency mask from GrayscaleBitmap to a GeBitmap, and has the ability to pass the shadowColor and
opacity factor. Also, the ToShadowBitmap always treats the GrayscaleBitmap as a transparency mask, even if it was
created from any color channel (not necessarily the alpha channel).

To add a shadow to an image:

1. Draw an image with some shapes and text.

C#

// Initialize GcBitmap.
using var bmp = new GcBitmap (800, 600, false);

// Draw an image.
using (var g = bmp.CreateGraphics(Color.AliceBlue))

{
Draw(g, 0, 0);

// Save the image without a shadow.
bmp.SaveAsPng ("WithoutSahdow.png") ;

static void Draw (GcGraphics g, float offsetX, float offsetY)
{

// Define the transformation matrix.
var baseT = Matrix3x2.CreateTranslation (offsetX, offsetY);

g.Transform = baseT;

// Draw an ellipse.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

}

g.DrawEllipse (new RectangleF (100, 100, 300, 200),

new Pen(Color.Orange, 20f));

// Draw a line.
g.DrawLine (new PointF (50, 400), new PointF (500,
new Pen (Color.RoyalBlue, 20f)
{
LineCap = PenlLineCap.Round
1)

// Draw strings.
g.DrawString ("Shadow",
new TextFormat
{
FontName = "Segoe UI",
FontSize = 40,
ForeColor = Color.MistyRose,
StrokePen = new Pen(Color.DarkRed, 1f)
}y
new PointF (200, 150));

g.Transform = Matrix3x2.CreateRotation((float) (Math.PI / 6))

50),

(Matrix3x2.CreateTranslation (50, 250) * baseT);

g.DrawString ("The shadow is added to both text and shapes.",

new TextFormat
{
FontName = "Times New Roman",
FontSize = 18,
ForeColor = Color.CornflowerBlue
by
new PointF (0, 0));

// Draw a rectangle.

g.DrawRectangle (new RectangleF (-15, -10, 470, 50),

new Pen(Color.Salmon, 1f));

2. Draw the image on a transparent background with an offset for the shadow.

© 2024 MESCIUS inc. All rights reserved.

149

Document Solutions for Imaging 150

) Movitig-Castle

C#

// Draw the image to the transparent background with an offset for shadow.

using (var g = bmp.CreateGraphics (Color.Transparent))

{
Draw (g, 20, 50);
}

3. Extract the alpha channel from GcBitmap to a GrayscaleBitmap.

oving Castle

C#

// Extract the alpha channel from GcBitmap to a GrayscaleBitmap.
using var gs = bmp.ToGrayscaleBitmap (ColorChannel.Alpha);

4. Apply some blur to the GrayscaleBitmap using the ApplyGaussianBlur method.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 151

oving Castle

C#

// BApply some blur to GrayscaleBitmap.
gs.ApplyGaussianBlur (9) ;

5. Convert the transparency mask from GrayscaleBitmap to GeBitmap, filling the opaque pixels with the shadow
color. Draw the transparency mask into the same bitmap using the ToShadowBitmap; there is no need to
create another GeBitmap instance.

C#

// Convert the transparency mask from GrayscaleBitmap to GcBitmap. Apply an
additional opacity factor.
gs.ToShadowBitmap (bmp, Color.CadetBlue, 0.4f);

6. Substitute the transparent background with an opaque background color.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 152

C#

// Substitute the transparent background with an opaque background color.
bmp.ConvertToOpaque (Color.AliceBlue) ;

7. Draw the main image onto the shadow image and save the image.

C#

// Draw the main image.
using (var g = bmp.CreateGraphics())

{
Draw (g, 0f, 0f);

// Save the image with a shadow.
bmp.SaveAsPng ("WithSahdow.png") ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 153

Add Glow and Soft Edges

DsImaging provides ApplyGlow method in GrayscaleBitmap class that will be used to add glow effect as well as soft edges to graphics. The glow effect inflates
all non-transparent areas of the image by the specified amount and then applies the Gaussian blur to make the border smooth. The soft edges effect deflates
non-transparent areas, then applies the Gaussian blur. The glow and soft edges effects are usually applied to a full-color image within a GeBitmap. The first
parameter of the method is set to a positive value (for glow effect) or a negative value (for soft edges effect) as per the requirement.

Glow Effect Soft Edges Effect

Ghape ® 4"

Refer to the following example to apply the glow effect:

C#

// Initialize TextLayout.
var tl = new TextLayout (96f);

// Configure text format.
var fl = new TextFormat
{
FontName = "Calibri",
FontSize = 120,
ForeColor = Color.DarkOrchid,
FontBold = true

var f2 = new TextFormat (fl)

ForeColor

Color.White,
StrokePen = new Pen(Color.DarkOrchid, 3)
}i

// Rppend the text.
tl.Append ("Grape", fl);
tl.Append("City", £2);

// Initialize GcBitmap.
using var bmp = new GcBitmap (880, 390, false);

// Create the graphic using text layout defined.
using (var g = bmp.CreateGraphics (Color.DarkGray))
{

g.DrawTextLayout (t1, new PointF (100, 80));

// Save the image without glow.
bmp.SaveAsPng ("WithoutGlow.png") ;

// Draw the text on a transparent bitmap at first.
using (var g = bmp.CreateGraphics (Color.Transparent))
{
g.Renderer.SlowAntialiasing = true;
g.DrawTextLayout (t1, new PointF (100, 80));

// Convert the image to a transparency mask.
using var gs = bmp.ToGrayscaleBitmap (ColorChannel.Alpha);

// RApply the glow effect to the transparency mask.
gs.ApplyGlow (4, 6);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 154

/* Map a shadow from the transparency mask to the source GcBitmap drawing opaque pixels with glow color (yellow).
Apply some additional transparency.*/
gs.ToShadowBitmap (bmp, Color.Yellow, 0.8f);

// Fill the background.
bmp.ConvertToOpaque (Color.Gray) ;

// Draw the text over the prepared background.
using (var g = bmp.CreateGraphics())
{
g.Renderer.SlowAntialiasing = true;
g.DrawTextLayout (tl, new PointF (100, 80));

// Save the image with glow.
bmp.SaveAsPng ("WithGlow.png") ;

Refer to the following example to apply the soft edges effect:

C#

// Initialize PathBuilder.
var pb = new PathBuilder();
pb.BeginFigure (100, 350);
pb.AddLine (210, 310);

// Define an arc.

var arc = new ArcSegment

{
Size = new SizeF (183, 173),
SweepDirection = SweepDirection.Clockwise,
Point = new PointF (550, 205),

bi

// Add arcs and lines.

pb.AddArc (arc) ;

pb.AddLine (650, 170);

pb.AddLine (680, 250);

pb.AddLine (575, 285);

arc.Point = new PointF (240, 390);

pb.AddArc (arc) ;

pb.AddLine (130, 430);

pb.EndFigure (true) ;

pb.Figures.Add (new EllipticFigure (new RectangleF (295, 197, 200, 190)));
var gpFill = pb.ToPath();

var gpStroke = gpFill.Widen (new Pen (Color.Black, 20));

// Draw the image.
using var bmp = new GcBitmap (800, 600, false);
var renderer = bmp.EnsureRendererCreated();

bmp.Clear (Color.RosyBrown) ;
renderer.FillPath (gpFill, Color.CornflowerBlue);

renderer.FillPath (gpStroke, Color.Moccasin);

// Save the image without soft edges.
bmp.SaveAsPng ("WithoutSoftEdges.png") ;

// Draw the figure on a transparent background.
bmp.Clear (Color.Transparent) ;
renderer.FillPath (gpFill, Color.CornflowerBlue);

renderer.FillPath (gpStroke, Color.Moccasin);

// Convert the image to the transparency mask.
using var gs = bmp.ToGrayscaleBitmap (ColorChannel.Alpha);

// BApply the soft edges effect to the transparency mask.
gs.ApplyGlow (-4, 8);

// Draw the original image.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 155

bmp.Clear (Color.RosyBrown) ;
renderer.TransparencyMaskBitmap = gs;
renderer.FillPath (gpFill, Color.CornflowerBlue);
renderer.FillPath (gpStroke, Color.Moccasin);

// Save the image with soft edges.

bmp.SaveAsPng ("WithSoftEdges.png") ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

Work with Text

156

DsImaging allows you to draw text on an image through GeBitmapGraphics class of Grapecity.Documents.Imaging namespace. There are two

ways in which we can render the text:

e Using DrawString method: The DrawString method is used when you simply need to draw a string at a specified location on an image.

However, when there is a possibility that the string might not fit in the available space, you can use the MeasureString method in

conjunction with the DrawString method. MeasureString method measures the string along with the width allocated to draw it and makes

it possible to draw a string in the allocated space using the DrawString method.

e Using TextLayout class: This approach gives you more control over the text to be rendered and provides various advanced options such as
formatting. In this approach, you create an instance of the TextLayout class and invoke the Append or AppendLine methods to add the text
runs to the TextLayout. Finally, you can invoke the DrawTextLayout method, which uses the instance of TextLayout class to draw the text

layout at a specified location.

Text rendered using the DrawString method:
Test string.

Text rendered using MeasureString]
method with DrawString method.

Text rendered using TextLayout. First
test string added to TextLayout. Second
test string added to TextLayout,
continuing the same paragraph.

Third test string added to TextLayout, a
new paragraph.

C#

var Inch = 96;
const float fontSize = 14;

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap (500, 500, true);

//Create the graphics for the Bitmap
GcBitmapGraphics g = origBmp.CreateGraphics (Color.White) ;

//TextFormat to specify font and other character formatting

var tf = new TextFormat ()

{

Font = Font.FromFile (Path.Combine ("Resources", "Fonts",

"times.ttf")),
FontSize = fontSize

bi

//First Way:
//DrawString: Render text using DrawString method at

//a specific location

g.DrawString ("Text rendered using the DrawString method:" +

"\r\n Test string.", tf, new PointF(Inch, Inch));

//Using MeasureString method along with DrawString

//to have more control over text layout

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 157

const string tstr = "Text rendered using MeasureString method" +
" with DrawString method.";

SizeF layoutSize = new SizeF(Inch * 3, Inch * 0.8f);
SizeF s = g.MeasureString(tstr, tf, layoutSize, out int fitCharCount);

// Show the passed in size in red, the measured size in blue,
// and draw the string within the returned size as bounds:
PointF pt = new PointF (Inch, Inch * 2);

g.DrawRectangle (new RectangleF (pt, layoutSize), Color.Red);
g.DrawRectangle (new RectangleF (pt, s), Color.Blue);
g.DrawString(tstr, tf, new RectangleF (pt, s));

// Second Way:

// TextLayout: A much more powerful and with better performance,
//way to render text

var tl = g.CreateTextLayout ()

// To add text, use Append() or AppendLine () methods:
tl.Append("Text rendered using TextLayout. ", tf);

tl.Append ("First test string added to TextLayout. ", tf);
tl.Append("Second test string added to TextLayout, continuing the" +

" same paragraph. ", tf);
tl.AppendLine(); // Add a line break, effectively starting a new paragraph
tl.Append("Third test string added to TextLayout, a new paragraph. ", tf);

tl.Append("Fourth test string, with a different char formatting. ",
new TextFormat (tf)
{
Font = Font.FromFile (Path.Combine ("Resources", "Fonts",
"timesbi.ttf")),
FontSize = fontSize,
FontBold = true,
FontItalic = true,
ForeColor = Color.DarkSeaGreen,

1)

//Setting layout options
tl.MaxWidth = g.Width - Inch * 2;

// Draw it on the page:
pt = new PointF (Inch, Inch * 3);
g.DrawTextLayout (tl, pt);

//Save the image rendering different shapes

origBmp.SaveAsJpeg ("RenderText.jpeg") ;

Back to Top
Text Trimming and Wrapping

Dslmaging supports text timming and wrapping to handle the text that does not fit in the allocated space. The TextLayout class provides the
TrimmingGranularity property which sets the text granularity as character or word and trims the over flowing text to display an ellipsis at the end.
This property accepts value from the TrimmingGranularity enumeration and works in conjunction with the WrapMode property which provides
the text wrapping options. To enable trimming, text wrapping should be disabled by setting the WrapMode property to NoWrap. The WrapMode
property also provides options to wrap a text at the grapheme cluster boundaries or as per the Unicode line breaking algorithm.

This is a long line of text which does not fit in the allocat. ..

C#

var Inch = 96;

const float fontSize = 12;

var str = "This is a long line of text which does not fit in" +

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 158

"the allocated space.";
var wid = Inch * 4;
var dy = 0.3f;
var ip = new PointF (50, 200);

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap (500, 500, true);

//Create the graphics for the Bitmap
GcBitmapGraphics g = origBmp.CreateGraphics (Color.White);

//Rendering text with Character trimming:

TextLayout tl = g.CreateTextLayout():;

tl.DefaultFormat.Font = Font.FromFile (Path.Combine ("Resources",
"Fonts", "times.ttf"));

tl.DefaultFormat.FontSize = fontSize;

tl.MaxWidth = wid;

tl.WrapMode = WrapMode.NoWrap;

tl.Append(str);

tl.TrimmingGranularity = TrimmingGranularity.Character;

g.DrawTextLayout (tl, ip);

//Render rectangle indicating the area which defines text trimming
g.DrawRectangle (new RectangleF (50, 200, wid, ip.Y - 200),
Color.OrangeRed) ;

//Save the image rendering different shapes
origBmp.SaveAsJpeg ("TrimText.jpeg") ;

Back to Top

Add Watermark

Dslmaging provides a mechanism to add watermarks on top of an image by rendering the watermark text using semi-transparent color. In order to
render a watermark text, you can use the DrawString method which takes the text format as a parameter. This text format is represented by the
TextFormat class and should have ForeColor property set to a semi-transparent color to render the string as a semi-transparent text, i.e,
watermark.

C#

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap (800, 800, true);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 159

//Create the graphics for the Bitmap
GcBitmapGraphics g = origBmp.CreateGraphics (Color.White) ;

Image image = Image.FromFile (Path.Combine ("Resources",
"Images", "reds.jpg")):;
RectangleF rc = new RectangleF (0, 0, image.Width, image.Height);

//Render the image
g.DrawImage (image, rc, null, ImageAlign.Default);

//Add text watermark to the image using a semitransparent color
g.DrawString (
"Watermark",
new TextFormat ()
{
Font = Font.FromFile (Path.Combine ("Resources", "Fonts",
"calibrib.ttf")),
FontSize = 96,
ForeColor = Color.FromArgb (128, Color.Yellow),
br
rc, TextAlignment.Center, ParagraphAlignment.Center, false);

//Save the image with watermark
origBmp.SaveAsJpeg ("Watermark.jpeg") ;

Back to Top
Characters and Fonts

DsImaging provides support for drawing text with different font types, such as OpenType, TrueType and WOFF, and characters with codes greater
than OxFFFF.In addition, you can also draw colored fonts such as Segoe Ul Emoji using Palette property of the TextFormat class. In this example, we
have drawn Garlicembrace.woff and seguiem;.ttf fonts on the drawing surface.

GARLIGEMBRACE.WOFF

seguiemj.ttf &) @

//Initialize Fonts

C#

Font garlicFont = Font.FromFile (Path.Combine ("Resources",
"Fonts", "Garlicembrace.woff"));
Font emojiFont = Font.FromFile (Path.Combine ("Resources",
"Fonts", "seguiemj.ttf"));

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap (500, 500, true);

//Create the graphics for the Bitmap
GeBitmapGraphics g = origBmp.CreateGraphics (Color.White);

//Define TexFormat and render text with specific font
TextFormat tf = new TextFormat
{

Font = garlicFont,

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

FontSize = 40
}i
g.DrawString ("Garlicembrace.woff", tf, new RectangleF (4, 4, 500, 50));

//Define TexFormat and render characrters with codes greater than OxFFFF
var pals = emojiFont.CreateFontTables (TableTag.CpalDraw) .GetPalettes();
tf = new TextFormat
{

Font = emojiFont,

FontSize = 40,

Palette = pals|[0]
bi
g.DrawString ("seguiemj.ttf \UOO01F433\UO001F349\U0001F367", tf,

new RectangleF (4, 140, 550, 50));

//Save the image
origBmp.SaveAsJpeg ("CharacterFonts.jpeg");

Back to Top

Right to Left

160

DsImaging provides support for rendering text in right to left direction using RightToLeft property of the TextLayout class. This property can be

used in a scenario where you use a language which is written in right to left direction, such as Arabic, Hebrew, etc.

A W g ladl s A guad) 238 il
o pelaall Lpaia A1l il Y1 A AL o
e g g1 52la 5508 oy jall o il
Alall s pal¥l el e A8 e
R il KA ALY
A Ay N a5 AN g 1
A alaiih g ey 0 (i g W1 sl
U 0 PR PRV, | P PR,
b game) IS B e 528 L LS A ilalll
Jea iy dra gl D g) g

el ol sl sl 2k Y1

To set the direction of text from right to left direction, you can set the value of the RightToLeft property to true.

C#

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap (300, 300, true);

//Create the graphics for the Bitmap
GcBitmapGraphics g = origBmp.CreateGraphics (Color.White) ;

string text = "5l Y1 5 dgb gy 0oVl pdadly dwlawdl i) axawsl g "o+
Mablae 1305 lS cday o opS8l s el LgaSs> 1M 4
TUSLS ey pdladl o spsY T oLl eSS e yblae gk 1"+
o Lad Il oY du iy dY I olad Il ALl N gdus Yy duwyLadl g 4"+
A RO D PSS Or [P SUNE S | S SUE) | PR SRR NS S ST A
Moy JSo wodS Leol LeS.daSLled¥ g M4

",
| ’

Mogadl gbed) Iuoblaedl Ipiuy 381 Jyadls duedwY ! Jeddl L5 ewy ad s

TextLayout tl = g.CreateTextLayout():;
tl.MaxWidth = 72 * 3;

tl.RightToLeft = true;

tl.TextAlignment = TextAlignment.Justified;
tl.Append (text) ;

g.DrawTextLayout (t1, new PointF (40, 50));

//Save the image
origBmp.SaveAsJpeqg ("RightToLeft. jpeg");

Back to Top

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 161

Vertical Text

DsImaging supports vertical text through FlowDirection property of the TextLayout class which accepts value from the FlowDirection
enumeration. To set the vertical text alignment, this property needs to be set to VerticalLeftToRight or VerticalRightToLeft. Additionally, the
TextLayout class provides an option to rotate the sideways text in counter clockwise direction using the RotateSidewaysCounterclockwise
property. Further,SidewaysInVerticalText and UprightinVerticalText property of the TextFormat class also provides options to display the text
sideways or upright respectively. These properties are especially useful for rendering Latin text within the East-Asian language text.

A
o
o

A
KA

-

7

|
<

St

-\

C#

//Initialize GcBitmap
GcBitmap bmp = new GcBitmap (90 * 4, 80 * 4, true, 384f, 384f);

//Create the graphics for the Bitmap
GeBitmapGraphics g = bmp.CreateGraphics (Color.White) ;

//Intialize TextLayout
var tl = g.CreateTextLayout () ;

//Define TexFormat and render text with specific font

var fmtl = new TextFormat ()

{
Font = Font.FromFile (Q@"c:\Windows\Fonts\YuGothM.ttc"),
FontSize = 12,
UprightInVerticalText = true,
GlyphWidths = GlyphWidths.QuarterWidths,
TextRunAsCluster = true

bi

tl.Append("123", fmtl);

//Define TexFormat and render text with specific font
var fmt2 = new TextFormat (fmtl)
{
UprightInVerticalText = false,
GlyphWidths = GlyphWidths.Default,
TextRunAsCluster = false
bi
tl.Append ("Z AW BIEHA!D ", fmt2);

fmt2.TransformToFullWidth = true;
tl.Append("he", fmt2);
tl.Append("11", fmtl);
tl.Append ("o ", fmt2);

fmt2.TransformToFullWidth = false;

fmt2.UseVerticallineGapForSideways = true;
tl.Append("hello ", fmt2);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 162

fmt2.SidewaysInVerticalText = true;
fmt2.GlyphWidths = GlyphWidths.HalfWidths;
tl.Append ("Z AW BIEHA! ", fmt2);

tl.MaxHeight = 80;
tl.MaxWidth = 90;

//Specify text lines should be placed vertically from right to left
tl.FlowDirection = FlowDirection.VerticalRightToLeft;

//Render TextLayout
g.DrawTextLayout (tl, new PointF(0f, 0f));

//Save the image
bmp.SaveAsPng ("VerticalText.png") ;

Back to Top
Text Around Images

In DsImaging, you can show text around images by identifying the area occupied by the embedded object, for instance, an image. The embedded
object can be represented by an object rectangle which can be defined using an instance of the ObjectRect class. This object rectangle is assigned
to the text layout using ObjectRects property of the TextLayout class in order to draw the text around the specified object rectangle.

Puffins are any of three small species of alcids (auks) in the bird
genus Fratercula with a brightly colouredbeak during the
breeding season. These are pelagic seabirds that feed primarily by

diving in the water. They breed in
large colonies on coastaleliffs or
offshore islands, nesting in crevices
among rocks or in burrews in the
sail. Two species, the rufted
puffin and horned puffin, are
Joundin the North Pacific Ocean,

while the Atlantic puffin is found
in the North Atlantic Ocean. All puffin species have
predominantly black or blackand white plumage, a stocky build,
and large beaks. They shed the colourful outer parts of their bills
after the breeding season, leaving ¢ smallerand duller beak. Their
short wings are adapted for swimming with a flying technigue
under water.In the air, they beat their wings rapidly(up to
400times per minute)[I1] in swift flight, often flying low over the
ocean's surface. A significant decline in numbers of puffins on
Shetland is worryingscientists.

C#

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap (500, 500, true);

//Create the graphics for the Bitmap
GcBitmapGraphics g = origBmp.CreateGraphics (Color.White) ;

//Get the demo image

Image imgPuffins = Image.FromFile ("Resources/Images/puffins-small.jpg");
var rectPuffins = new RectangleF (100, 70, 180, 180);

// Set up ImageAlign that would fit and center an image within a
//specified area, preserving the image's original aspect ratio
ImageAlign ia = new ImageAlign (ImageAlignHorz.Center,

ImageAlignVert.Center, true, true, true, false, false);

// Draw image, providing an array of rectangles as an output
//parameter to get the actual image rectangle

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 163

g.DrawImage (imgPuffins, rectPuffins, null, ia,
out RectangleF[] rectsPuffins);

//Sample Text

string sampleText = "Puffins are any of three small species of" +
" alcids (auks) in the bird genus Fratercula with a brightly" +
" coloured beak during the breeding season. These are pelagic" +
" seabirds that feed primarily by diving in the water. They" +
" breed in large colonies on coastal cliffs or offshore" +

" islands, nesting in crevices among rocks or in burrows in" +

the soil. Two species, the tufted puffin and horned puffin," +
" are found in the North Pacific Ocean, while the Atlantic" +
puffin is found in the North Atlantic Ocean. All puffin" +
species have predominantly black or black and white plumage," +

a stocky build, and large beaks.They shed the colourful outer" +

parts of their bills after the breeding season, leaving a" +

smaller and duller beak. Their short wings are adapted for" +

swimming with a flying technique under water.In the air, they" +

beat their wings rapidly(up to 400 times per minute) [1] in" +

swift flight, often flying low over the ocean's surface. A" +
" significant decline in numbers of puffins on Shetland is" +

" worrying scientists.";

//Create and set up a TextLayout object to print the text:

var tl = g.CreateTextLayout () ;

tl.DefaultFormat.Font = Font.FromFile (Path.Combine ("Resources", "Fonts",

"timesbi.ttf"));

tl.DefaultFormat.FontSize = 12;

tl.TextAlignment = TextAlignment.Justified;

tl.MaxWidth = origBmp.Width;

tl.MaxHeight = origBmp.Height;

tl.MarginAll = 72 / 2;

// ObjectRect is the type used to specify the areas to flow around

//to TextLayout.

// Create an ObjecRect based on an image rectangle, adding some

//padding so that the result looks nicer

tl.0bjectRects = tl.0ObjectRects = new List<ObjectRect> ()

{ new ObjectRect (rectsPuffins[0].X - 6, rectsPuffins[0].Y - 2,
rectsPuffins[0] .Width + 12, rectsPuffins[0].Height + 4) };

// Add text:
tl.Append(sampleText) ;

// draw layout for the text:
g.DrawTextLayout (tl, PointF.Empty);

//Save the image
origBmp.SaveAsJpeg ("TextAroundImage.jpeg") ;

Back to Top
Paragraph Formatting

DsImaging uses GrapeCity.Documents.Text namespace which provides TextLayout class that represents one or more paragraphs of text with
same formatting. This class also provides various properties to align and format paragraphs. For example, this class provides ParagraphAlignment
property which takes the values from ParagraphAlignment enumeration to set the alignment of paragraphs along the flow direction axis. The
FirstLinelndent and LineSpacingScaleFactor properties of the TextLayout class can be used to apply the basic paragraph formatting options such
as line indentation and spacing.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 164

Text rendered using TextLayout.
First test string added to TextLayout.
Second test string added to TextLayout,
continuing thesame paragraph.

Third test string added to
TextLayout, a new paragraph.

To format a paragraph:

. Initialize the GcBitmap class.

. Create a drawing surface using CreateGraphics method of the GcBitmap class which returns an instance of the GecBitmapGraphics class.

. Add text using the Append and AppendLine methods of TextLayout class to create a paragraph.

. Set the text formatting attributes such as font, font size, color, etc. using the TextFormat class properties.

. Set first line offset, spacing between paragraphs and line spacing to format a paragraph using FirstLinelndent, ParagraphSpacing and
LineSpacingScaleFactor properties of the TextLayout class respectively.

U b wpn =

C#

var Inch = 96;
const float fontSize = 14;

//Initialize GcBitmap
GeBitmap origBmp = new GcBitmap (500, 500, true);

//Create the graphics for the Bitmap
GcBitmapGraphics g = origBmp.CreateGraphics (Color.White) ;

// TextFormat to specify font and other character formatting:

var tf = new TextFormat ()

{
Font = Font.FromFile (Path.Combine ("Resources", "Fonts", "times.ttf")),
FontSize = fontSize

}i

// TextLayout: A much more powerful way to render text with

//better performance

var tl = g.CreateTextLayout();

// To add text, use Append() or AppendLine () methods:

tl.Append("Text rendered using TextLayout. ", tf);

tl.Append("First test string added to TextLayout. ", tf);

tl.Append("Second test string added to TextLayout, continuing the" +
"same paragraph. ", tf);

//Add a line break, effectively starting a new paragraph
tl.AppendLine () ;
tl.Append("Third test string added to TextlLayout, a new paragraph. ",
tf);
tl.Append("Fourth test string, with a different char formatting. ",
new TextFormat (tf)
{
Font = Font.FromFile (Path.Combine ("Resources", "Fonts",
"timesbi.ttf")),
FontSize = fontSize,
FontBold = true,
FontItalic = true,
ForeColor = Color.DarkSeaGreen,

b

//Setting layout options
tl.MaxWidth = g.Width - Inch * 2;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 165

//Paragraph formatting can also be set, here we set first

//line offset, spacing between paragraphs and line spacing:

tl.FirstLineIndent = Inch * 0.5f;

tl.ParagraphSpacing = Inch * 0.05f;

tl.LineSpacingScaleFactor = 0.8f;

// Draw it on the page:
PointF pt = new PointF (Inch, Inch * 2);

g.DrawTextLayout (t1l, pt);

//Save the image rendering different shapes

origBmp.SaveAsJpeg ("ParagraphFormat. jpeg") ;

Back to Top

Line Breaking and Justification in Paragraph

DsImaging provides LineBreakingRules and WordBoundaryRules properties in the TextLayout class to employ streamlined rules in addition to
standard Unicode methods. When applying a line break or word break, these properties accept the enumeration values Unicode or Simplified, which

specify the algorithm to be applied.

DsImaging also provides TextExtensionStrategy property to justify the text when TextAlignment property is set to either Justified or Distributed.
TextExtensionStrategy property offers multiple strategies, such as Default, Normal, EastAsianExcel, and Excel, that allow text extension for wide
characters and white spaces or for white spaces only.

LineBreakingRules WordBoundaryRules TextExtensionStrategy Effect

Unicode

Unicode

Unicode

Simplified

Simplified

Simplified

Unicode

Unicode

Unicode

Simplified

Simplified

Simplified

Default

EastAsianExcel

Excel

Default

EastAsianExcel

Excel

a b ¢ d e f g |
1010101010abc; 99999974 %I &
T f#F & h 99 555

abcdefg!
1010101010abc;999999 & %I &
T £ T Hh 99 555

abcdefg!
1010101010abc;9999997 5|
T{EE 99 555

abcdefg!1010101010abc;99999
QKGN BETHEZHO9 555

abcdefg!1010101010abc; 99999
Q9K % B T & 99 555

abcdefg!1010101010abc; 99999
ORF S THEE 99 555

Refer to the following example code to add line breaks and justification to a paragraph.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 166

C#

// Initialize Fonts.
var arialbd = GCTEXT.Font.FromFile (Path.Combine ("Resources", "Fonts", "arialbd.ttf"));
var arialuni = GCTEXT.Font.FromFile (Path.Combine ("Resources", "Fonts", "arialuni.ttf"));

// Initialize GcBitmap.
var bmp = new GcBitmap (pixelSize.Width, pixelSize.Height, opaque, dpi, dpi);

// Create graphic for the Bitmap.
using var g = bmp.CreateGraphics (Color.White);

// Initialize TextLayout and set its properties.
var tl = g.CreateTextLayout ()’

tl.TextAlignment = TextAlignment.Distributed;
tl.JustifiedSpaceExtension = 0f;
tl.JustifiedTextExtension = 20f;

// Initialize TextFormat and set its properties.

var tf = new TextFormat { FontSize = 26f, Font = arialuni };
var tfInfo = new TextFormat { FontSize = 11f, Font = arialbd };
float marginx = 260, marginy = 36;

tl.MaxWidth = pixelSize.Width - marginx * 2;

var text = "abcdefg!1010101010abc; 9999994 FE CAli& 199 555";

// Render TextLayout and set the LineBreakingRules and WordBoundaryRules properties.
float DrawText (TextLayout tl, float y)
{

var pt = new PointF(marginx, y + 20);

tl.Append(text, tf);

// Perform layout for the whole text.

tl.PerformLayout (true);

var rc = new RectangleF (pt, new SizeF(tl.ContentWidth, tl.ContentHeight));
g.FillRectangle(rc, Color.PaleGoldenrod);

// Render text using DrawString method at a specific location.
g.DrawString ($"LineBreakingRules.{tl.LineBreakingRules}, TextExtensionStrategy.
{tl.TextExtensionStrategy}:",
tfInfo, new PointF (marginx / 2f, y));
g.DrawTextLayout (tl, pt);
tl.Clear();
return rc.Bottom + 16;

float y = marginy, dy = marginy * 3.5f;

y = DrawText (tl, vy);

tl.TextExtensionStrategy = TextExtensionStrategy.EastAsianExcel;
y = DrawText (tl, vy);

tl.TextExtensionStrategy = TextExtensionStrategy.Excel;

y = DrawText (tl, vy);

tl.LineBreakingRules = LineBreakingRules.Simplified;
tl.WordBoundaryRules = WordBoundaryRules.Simplified;
tl.TextExtensionStrategy = TextExtensionStrategy.Default;

y = DrawText (tl, vy);

tl.TextExtensionStrategy = TextExtensionStrategy.EastAsianExcel;
y = DrawText (tl, vy);

tl.TextExtensionStrategy = TextExtensionStrategy.Excel;

y = DrawText (tl, vy);

iZ Note: The following properties are internally mapped to new properties and, hence, are marked obsolete:

® TextlLayout.SimplifiedWordBreak
® TextlLayout.SimplifiedAlignment
® TextLayout.NoExcelAlignment

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

Limitation

In a few uncommon instances, behaviour of the old properties might change.

Text Splitting

167

Dslmaging supports splitting of text layout through Split method of the TextLayout class. The Split method splits the text based on the bounds

Lorem ipsum dolor sit
amet, consectetueradipiscing
elit. Aenean commodo ligula
egel dolor. Aenean massa.
Cum sociis natoque penatibus
et magnis dis parturient
montes, nascetur ridiculus
mus.

Donec quam felis,
ultricies nec, pellentesque eu,
pretium quis, sem. Nulla

consequat massa quis enim.
Donec pede justo, fringilla
velaliguet nec, vulputate eget,
arcu. In enim justo, rhoncus ut,
imperdiet a, venenatis vitae,
justo. Nullam dictum felis eu
pede mollis pretium. Integer
tincidunt. Cras dapibus.
Vivamus elementum semper
nisi. Aenean vulputate eleifend
tellus. Aenean leo ligula,

defined by the TextLayoutand returns the individual text which is rendered using the DrawTextLayout method.

porttitor eu, consequat vitae,
eleifend ac, enim. Aliqguam
lorem ante, dapibus in,
viverra quis, feugiat a, tellus.
Phasellus viverra nulla ut
metus varius laoreet,
Quisquerutrum. Aenean
imperdiet. Etiam ultricies nisi
vel augue. Curabitur
ullamcorper ultricies nisi.

The following example illustrates text splitting where the text is split into multiple columns by invoking the Split method which creates a magazine

style multi-column layout.

C#

//Initialize GcBitmap
GcBitmap origBmp = new GcBitmap (800, 300, true);

//Create the graphics for the Bitmap
GeBitmapGraphics g = origBmp.CreateGraphics (Color.White);

g.Renderer.Multithreaded = true;
g.Renderer.SlowAntialiasing = true;

var tl = g.CreateTextLayout ()
tl.TextAlignment = TextAlignment.Justified;
tl.FirstLineIndent = 96 / 2;

// Add some text (note that TextLayout interprets "\r\n",

//"\r" and "\n" as paragraph delimiters)

tl.Append("Lorem ipsum dolor sit amet, consectetuer" +
"adipiscing elit. Aenean commodo ligula eget dolor. " +
"Aenean massa. " +
"Cum sociis natoque penatibus et magnis dis parturient " +
"montes, nascetur ridiculus mus. \r\n Donec quam felis, " +
"ultricies"™ + "" + " nec, pellentesque eu, pretium quis, sem." +
" Nulla consequat massa quis enim. Donec pede justo, fringilla vel"
"aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, " +
"imperdiet a, venenatis vitae, justo. Nullam dictum felis eu" +

"

pede mollis pretium. Integer tincidunt. Cras dapibus." +

Vivamus elementum semper nisi. Aenean vulputate eleifend" +

" tellus. Aenean leo ligula, porttitor eu, consequat vitae," +

" eleifend ac, enim. Aliquam" +

"\r\n lorem ante, dapibus in, viverra quis, feugiat a, tellus." +
" Phasellus viverra nulla ut metus varius laoreet. Quisque" +
"rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue." +

" Curabitur ullamcorper ultricies nisi.");

// Set up columns
const int colCount = 3;
const float margin = 96 / 2; //1/2" margins all around
const float colGap = margin / 2; //1/4" gap between columns
float colWidth = (origBmp.Width - margin * 2 -

colGap * (colCount - 1)) / colCount;
tl.MaxWidth = colWidth;

© 2024 MESCIUS inc. All rights reserved.

+

Document Solutions for Imaging 168

tl.MaxHeight = origBmp.Height - margin * 2;
// Calculate glyphs and perform layout for the whole text
tl.PerformLayout (true);

// In a loop, split and render the text in the current column
int col = 0;
while (true)
{
// The TextLayout that will hold the rest of the text
//which did not fit in the current layout
var tso = new TextSplitOptions(tl)
{
MinLinesInLastParagraph = 2,
MinLinesInFirstParagraph = 2
bi
var splitResult = tl.Split(tso, out TextLayout rest);
g.DrawTextLayout (t1l, new PointF (margin + col * (colWidth +
colGap), margin));

if (splitResult != SplitResult.Split)
break;

tl = rest;

if (++col == colCount)
break;

//Save the image

origBmp.SaveAsJpeg ("Columns.jpeg");

Back to Top

Support for Bitmap Glyphs

DsImaging library supports embedded bitmap glyphs or scaler bits (Sbits) specified by EBDT (Embedded bitmap data) table. Dsimaging

provides AllowFontSbits and UseBitmapCache properties in the TextFormat class. These properties can be used in cross-platform OpenType CJK

fonts for representing complex glyphs at very small sizes.

When UseBitmapCache is set to True When UseBitmapCache is set to False

i — Pl == [
OFEIE L TE o H TR AT

To add Bitmap Glyph support for OpenType CJK font:

Cy

pil

1. Load a Japanese Font file.
2. Configure Text format.
3. Set the UseBitmapCache property to True to use Bitmap Glyph Cache.
4. Set the AllowFontSbits property to True to get embedded bitmaps from EBDT font table.
5. Draw the Japanese string with Bitmap Glyph Cache.
6. Save the image.
C#
static void Main(string[] args)

{
//Load the japanese font file
var font = Font.FromFile ("msgothic.ttc");

//Configure the text format

TextFormat tf = new TextFormat

{
Font = font,
FontSizeInGraphicUnits = true,
FontSize = 12,

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 169

//Allows to use Bitmap Glyph Cache
UseBitmapCache = true,
// Allows to use embedded bitmaps from the EBDT font table
AllowFontSbits = true
bi
// Japanese string
var s = "iEEHERRA;
using (var bmp = new GcBitmap (90, 40, true))

{
using (var g = bmp.CreateGraphics (Color.White))

{
// Draws the japanese string with Bitmap Glyph Cache

g.DrawString(s, tf, new RectangleF (4, 4, 130, 20));

//The code lines below are used to showcase how the Japenese text is drawn
//when UseBitmapCache is set to false.

tf.UseBitmapCache = false;

g.DrawString (s, tf, new RectangleF (4, 24, 130, 20));

}
//Save the image
bmp.SaveAsPng ("BitmapGlyphSupport.png") ;

Console.WritelLine ("\n----Image Saved----");
Console.ReadLine () ;

}

Support TrueType Hinting Instructions

Hinting instructions are included in some TrueType fonts which improve their look by reusing some glyph parts in different glyphs regardless of
their font size. The TrueType hinting instructions are also supported in DsImaging which supports drawing CJK characters as combinations of
other smaller glyph pieces which enhances their final look.

Dslmaging library supports TrueType hinting instructions when rendering text on GeGraphics.

For fonts which include TrueType glyph hinting instructions, the EnableHinting property of the Font class is set to true, for the others it is set to
False. Further, to apply the hinting instructions of the font, EnableFontHinting property of the TextFormat class must be set to true (the default
value).

However, if the EnableHinting property is explicitly set to false, then the hinting instructions cannot be enabled.

As the default value of both the properties is true, hence the hinting instructions are supported for any TrueType font which includes them. Also,
both properties affect text drawing on GeBitmapGraphics only.

Disabled Hinting Intructions

The quick brown fox jumps over the |lazy dog.

The quick brown fox jumps over the lazy dog.

A R EAR) e B4R JPM2. 05 A= K

Enabled Hinting Intructions

The guick brown fox jumps over the lazy dog.

The guick brown fox jumps over the lazy dog.

ANFRZE T EAR | B R B R AEPM2. 052 AR

To enable TrueType hinting instructions for Chinese string:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 170

Load a Chinese Font file.

. Initialize the GcBitmap class.

. Create a drawing surface using CreateGraphics method of the GeBitmap class which returns an instance of the GeBitmapGraphics class.
. Define a Chinese string and configure TextFormat properties.

. Set the EnableFontHinting property to true to enable hinting instructions..

. Draw the Chinese string.

. Save the image.

NouUAwWwN =

C#

//Load the Chinese font file
var font = Font.FromFile ("kaiu.ttf");
var bmp = new GcBitmap (750 * 2, 180 * 2, true, 192f, 192f);
{
var g = bmp.CreateGraphics (Color.White);
{
//Draw the string with hinting instructions set to true

string s = @"FZIMETH, ~HZIWHETR";

//Define text formatting attributes
var tf = new TextFormat ()
{
Font = font,
FontSize = 20,
EnableFontHinting = true
}i

g.DrawString(s, tf, new PointF (10, 110));
}
bmp.SaveAsPng ("ChineseFontwithHintingInstructions.png");

For more information about working with text using DsImaging, see DsImaging sample browser.

2] Note: For rendering large or complex text and graphics, you can use Skia library. For more information about the library and its usage,
see Render using Skia Library.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-imaging/demos/basics/text/text-rendering/code-cs

Document Solutions for Imaging 171

Draw Rotated Text

Dslmaging allows you to draw rotated text in unrotated rectangular bounds using DrawRotatedText
and MeasureRotatedText methods of GecGraphics class. DrawRotatedText draws text at an angle in a specified
rectangle, whereas MeasureRotatedText calculates the bounds where to draw the text.

Both methods accept the same parameters despite their different functioning. The following table lists the parameters
these methods accept:

Parameters Description

textLayout TextLayout to draw. This includes one or multiple text lines with various text
formats. TextAlignment property specifies the alignment of text in each text line. It is important to
draw a rotated text.

Z| Note: A few other properties of TextLayout have no effect when drawing a rotated text:

MaxWidth, MaxHeight, FlowDirection, CanSkipFirstLineWithIndentation, ObjectRects,
ParagraphAlignment, MarginLeft, MargingRight, MarginTop, MarginBottom, ColumnWidth,
and RowHeight.

angle Text rotation angle in degrees. The expected range is -90 and +90, specifying an angle in degrees.
Positive angles refer to clockwise rotation. Angles less than -90 are treated as -90 degrees, and
angles greater than +90 are treated as +90 degrees.

verticalStacking ' Stacks text lines either horizontally (along the top and bottom sides of the rectangle) or vertically
(along the left and right sides of the rectangle).

rect Target rectangle for the text.

alignment Alignment of the whole text rectangle within the target rectangle using RotatedTextAlignment
enumeration to: Top Left, Top Right, Top Center, Bottom Left, Bottom Right, Bottom Center, Middle
Left, Middle Right, and Middle Center.

Z] Note: The methods may change or split the original TextLayout into multiple parts. Hence, if necessary, create a
clone of the TextLayout in advance.

Refer to the example code to draw multiple rotated texts in different settings:

C#

// Initialize GcWicBitmap.
using var bmp = new GcWicBitmap (1050, 310, true);

// Draw rotated text with specified angle and alignment.

using (var g = bmp.CreateGraphics (Color.White))

{
Draw (g, 10, angle: -90, false, RotatedTextAlignment.BottomLeft,

TextAlignment.Leading) ;
Draw (g, 240, angle: -60, false, RotatedTextAlignment.BottomLeft,

TextAlignment.Leading) ;
Draw (g, 480, angle: -45, false, RotatedTextAlignment.BottomLeft,

TextAlignment.Leading) ;
Draw (g, 720, angle: -30, false, RotatedTextAlignment.BottomLeft,

TextAlignment.Leading) ;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

// Save the image.
bmp.SaveAsPng ("RotatedText.png") ;

// Define Draw method.
static void Draw (GcGraphics g, int x, int angle, bool verticalStacking,
RotatedTextAlignment rotatedAlign, TextAlignment textAlign)

// Initialize RectangleF.
var rect = new RectangleF(x, 100, 200, 200);

// Draw rectangle.

g.DrawRectangle (rect, new Pen(Color.Green, 1));

// Initialize TextLayout.
var tl = g.CreateTextLayout();

// Set text format.
var fmt = new TextFormat
{
FontName = "Calibri",
FontSize = 18,
}i

// Add the text.
tl.Append("This is long text, very long text, very long long.", fmt);

// Set text alignment.
tl.TextAlignment = textAlign;

// Clone TextLayout.
var tlCopy = tl.Clone(true);

// Calculate bounds of rotated text inside a rectangle.
var tlRect = g.MeasureRotatedText (tlCopy, angle, verticalStacking, rect,
rotatedAlign);

// Draw rectangle with text.
g.DrawRectangle (t1lRect, new Pen(Color.Red, 1));

// Draw rotated text.
g.DrawRotatedText (t1l, angle, verticalStacking, rect, rotatedAlign);

// Draw strings with all text fromat details.

fmt.FontSize = 12;

g.DrawString ($"angle = {angle}°", fmt, new PointF(x, 10));
g.DrawString(
g.DrawString ($"alignment = {rotatedAlign}", fmt, new PointF(x, 50));
g (

.DrawString ($"verticalStacking = {verticalStacking}", fmt, new PointF (x,

© 2024 MESCIUS inc. All rights reserved.

$"TextAlignment = {tl.TextAlignment}", fmt, new PointF(x, 30));

172

70));

Document Solutions for Imaging

angle = -90°
TextAlignment = Leading
alignment = BottomLeft
verticalStacking = False

Lo
.a;-<>
S
)
w2

a0 &b
o ¢ c
wn O O
mim
= c
c o
E > ©°

angle = -60°
TextAlignment = Leading
alignment = BottomLeft
verticalStacking = False

angle = -45°
TextAlignment = Leading
alignment = BottomLeft
verticalStacking = False

173

angle = -30°
TextAlignment = Leading
alignment = BottomLeft
verticalStacking = False

g L N)
AR
é? S &§ \§° \dd%
Q:' _\q’ ,@:" (\QO \1.6(\“
LSRN $ O *’ﬁt
() & xe
N o QA $
o W o ¥ O o
© & % AN o \O
L S E N © o0
NI Q<@ A\

Draw Excel Like Rotated Text

With DrawRotatedText method, DsImaging allows you to define DrawExcelText method, which simulates the Excel
renderer used for drawing rotated text. This method will differ from the DrawRotatedText method, as it considers the
positive angles to render the text in a counterclockwise direction.

Refer to the example code to draw rotated text in specified unrotated rectangular bounds similar to Excel:

C#

namespace ExcelTextSimulator

{

// Define enums.

enum HorizontalAlignment

{
Left,

Right,
Center

enum VerticalAlignment

{
Top,

Bottom,
Center

internal class Program

{

static void Main(string[])

{

// Initialize GcBitmap.

using

{

(var bmp = new GcBitmap (700, 450, true))

// Draw rotated text.

using (var g = bmp.CreateGraphics(Color.White))

{
100, 500,

Draw (g, new RectangleF (100,

}
bmp.SaveAsPng ("ExcellLikeRotatedText.png") ;

© 2024 MESCIUS inc. All rights reserved.

250));

Document Solutions for Imaging

// Define Draw method.

static void Draw(GcGraphics g, RectangleF rect)

{

// Draw rectangle.

g.DrawRectangle (rect, new Pen(Color.Green, 1));

// Initialize TextLayout.
var tl = g.CreateTextLayout();

// Set text format.

var fmt = new TextFormat

{
FontName = "Calibri",
FontSize = 30,
FontSizeInGraphicUnits = true

}i

// Add the text.
tl.Append("Quick brown", fmt);
fmt.FontSize = 60;

tl.Append (" fox", fmt);
fmt.FontSize = 30;

tl.Append (" jumps over the lazy dog.", fmt);

fmt.FontSize = 50;
tl.Append (" Quick brown fox Jjumps",
fmt.FontSize = 20;

fmt) ;

tl.Append (" over the lazy dog.", fmt);

int angle = 45;

// Draw text.

DrawkExcelText (g, tl, angle, rect, HorizontalAlignment.Right,

VerticalAlignment.Top) ;
}

// Define DrawExcelText method.
static void DrawExcelText (GcGraphics g,

TextLayout tl1,

int degrees,

RectangleF rect, HorizontalAlignment hAlign, VerticalAlignment vAlign)

{
if (degrees == 90)
{

if (vAlign == VerticalAlignment.Bottom)

tl.TextAlignment = TextAlignment.Leading;

else if (vAlign == VerticalAlignment.Top)

tl.TextAlignment = TextAlignment.Trailing;

else

tl.TextAlignment = TextAlignment.Center;

© 2024 MESCIUS inc. All rights reserved.

174

Document Solutions for Imaging 175

else if (degrees == -90)
{
if (vAlign == VerticalAlignment.Top)
tl.TextAlignment = TextAlignment.Leading;
else if (vAlign == VerticalAlignment.Bottom)
tl.TextAlignment = TextAlignment.Trailing;
else
tl.TextAlignment = TextAlignment.Center;

else

if (hAlign == HorizontalAlignment.Left)
tl.TextAlignment = TextAlignment.Leading;
else if (hAlign == HorizontalAlignment.Right)
tl.TextAlignment = TextAlignment.Trailing;
else
tl.TextAlignment = TextAlignment.Center;

RotatedTextAlignment align;
if (vAlign == VerticalAlignment.Top)
{
if (hAlign == HorizontalAlignment.Left)
align = RotatedTextAlignment.TopLeft;
else if (hAlign == HorizontalAlignment.Right)
align = RotatedTextAlignment.TopRight;
else
align = RotatedTextAlignment.TopCenter;
}
else if (vAlign == VerticalAlignment.Bottom)
{
if (hAlign == HorizontalAlignment.Left)
align = RotatedTextAlignment.BottomLeft;
else if (hAlign == HorizontalAlignment.Right)
align = RotatedTextAlignment.BottomRight;
else
align = RotatedTextAlignment.BottomCenter;

else
{
if (hAlign == HorizontalAlignment.Left)
align = RotatedTextAlignment.MiddlelLeft;
else if (hAlign == HorizontalAlignment.Right)
align = RotatedTextAlignment.MiddleRight;
else

align = RotatedTextAlignment.MiddleCenter;

// Draw rotated text inside a specific rectangle.
g.DrawRotatedText (t1l, -degrees, false, rect, align);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 176

Draw Text in Slanted Rectangles

With DrawSlantedText method of GeGraphics class, DsImaging also allows you to draw rotated text in specified
slanted rectangular bounds, similar to Excel. This method is similar to DrawRotatedText method except for the
parameter of SlantedTextAlignment type.

SlantedTextAlignment enumeration provides the following six different modes for the slanted rectangles:

Modes

BelowRotatedInside

BelowRotatedOutside

AboveRotatedInside

AboveRotatedOutside

CenterlnsideQutside

CenterOutsidelnside

Description

The text appears below the rectangle side, rotated to the same angle as text. The side above
the text is rotated inside the rectangle.

The text appears below the rectangle side, rotated to the same angle as text. The side above
the text is rotated outside the rectangle.

The text appears above the rectangle side, rotated to the same angle as text. The side below
the text is rotated inside the rectangle.

The text appears above the rectangle side, rotated to the same angle as text. The side below
the text is rotated outside the rectangle.

The text appears at the center between the rectangle sides, rotated to the same angle as
text. The side above the text is rotated inside the rectangle.

The text appears at the center between the rectangle sides, rotated to the same angle as
text. The side above the text is rotated outside the rectangle.

Refer to the example code to draw rotated text in specified slanted rectangular bounds in different modes similar to

Excel:

C#

// Initialize GcWicBitmap.

using var bmp = new GcWicBitmap (940, 640, true);

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

// Draw rotated text in slanted rectangles.

using (var g = bmp.CreateGraphics(Color.White))

{

int angle = -70;

var slantedAlignl SlantedTextAlignment.BelowRotatedInside;
var slantedAlign2 SlantedTextAlignment.BelowRotatedOutside;
var slantedAlign3 SlantedTextAlignment.AboveRotatedInside;
var slantedAligni4 SlantedTextAlignment.AboveRotatedOutside;
var slantedAlign5 SlantedTextAlignment.CenterInsideOutside;
var slantedAlign6 SlantedTextAlignment.CenterOutsideInside;

bool verticalStacking = false;

int

x1 = 100;

int ylHead = 10;
int yl1 = 100;
int y2Head = 320;
int y2 = 410;

// Draw text and rectangle with specified angle and alignment.
Draw (g, x1, ylHead, yl, angle, verticalStacking, slantedAlignl,
TextAlignment.Leading) ;

Draw (g, x1 + 270, ylHead, yl, angle, verticalStacking, slantedAlign2,

TextAlignment.Trailing) ;

Draw (g, x1 + 540, ylHead, yl, angle, verticalStacking, slantedAlign3,

TextAlignment.Center) ;

Draw (g, x1, y2Head, y2, angle, verticalStacking, slantedAlign4,
TextAlignment.Leading) ;

Draw (g, x1 + 270, y2Head, y2, angle, verticalStacking, slantedAlign5,

TextAlignment.Trailing);

Draw (g, x1 + 540, y2Head, y2, angle, verticalStacking, slantedAligné,

TextAlignment.Center) ;

}

// Save the image.
bmp.SaveAsPng ("TextinSlantedRectangle.png") ;

// Define Draw method.
static void Draw (GcGraphics g, int x, int yHead, int y, int angle, bool

verticalStacking, SlantedTextAlignment slantedAlign, TextAlignment textAlign)

{
RectangleF rect;
if (!verticalStacking)
{
// Initialize RectangleF.
rect = new RectangleF(x, vy, 160, 200);
float dx = (float) (200.0 / Math.Tan(Math.PI * angle / -180.0));

// Set switch cases for different slanted text alignments.
switch (slantedAlign)

© 2024 MESCIUS inc. All rights reserved.

177

Document Solutions for Imaging 178

case SlantedTextAlignment.BelowRotatedInside:
case SlantedTextAlignment.AboveRotatedOutside:
case SlantedTextAlignment.CenterInsideOutside:

// Draw the polygon.
g.DrawPolygon ([
new PointF(x + dx, y),
new PointF(x + dx + 160, y),
new PointF(x + 160, y + 200),
new PointF(x, y + 200)1,
new Pen(Color.Red, 1));
break;
case SlantedTextAlignment.BelowRotatedOutside:
case SlantedTextAlignment.AboveRotatedInside:
case SlantedTextAlignment.CenterOutsidelInside:

// Draw the polygon.
g.DrawPolygon ([
new PointF(x, V),
new PointF(x + 160, vy),
new PointF(x - dx + 160, y + 200),
new PointF(x - dx, y + 200)],
new Pen(Color.Red, 1));
break;

else

// Initialize RectangleF.
rect = new RectangleF(x, y, 200, 160);
float dy = (float) (200.0 * Math.Tan(Math.PI * angle / 180.0));

// Set switch cases for different slanted text alignments.
switch (slantedAlign)
{
case SlantedTextAlignment.BelowRotatedInside:
case SlantedTextAlignment.AboveRotatedOutside:
case SlantedTextAlignment.CenterInsideOutside:
if (angle >= 0)

// Draw the polygon.

g.DrawPolygon ([
new PointF(x, vVv),
new PointF(x + 200, y + dy),
new PointF(x + 200, y + dy + 160),
new PointF(x, y + 160)],
new Pen (Color.Red, 1));

else

// Draw the polygon.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 179

g.DrawPolygon (
new PointF(x, y - dy),

x + 200, vy),

new PointF(x + 200, y + 160),

new PointF(x, y - dy + 160)1],

new Pen (Color.Red, 1));

new PointF

[
(
(
(

break;
case SlantedTextAlignment.BelowRotatedOutside:
case SlantedTextAlignment.AboveRotatedInside:
case SlantedTextAlignment.CenterOutsidelInside:
if (angle >= 0)

// Draw the polygon.

g.DrawPolygon ([
new PointF(x, y - dy),
new PointF(x + 200, vy),
new PointF(x + 200, y + 160),
new PointF(x, y - dy + 160)],
new Pen(Color.Red, 1));

else

// Draw the polygon.

g.DrawPolygon ([
new PointF(x, vVv),
new PointF(x + 200, y + dy),
new PointF(x + 200, y + dy + 160),
new PointF(x, y + 160)],
new Pen(Color.Red, 1));

break;

// Draw the rectangle.
g.DrawRectangle (rect, new Pen(Color.Blue, 0.5f) { DashStyle = DashStyle.Dash });

// Initialize TextLayout.
var tl = g.CreateTextLayout();

// Set text format.
var fmt = new TextFormat

{
FontName = "Calibri",
FontSize = 18,

// Add the text.
tl.Append ("Working of different slanted text alignments.", fmt);

// Set text alignment.
tl.TextAlignment = textAlign;

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 180

// Draw text in slanted rectangle.
verticalStacking, rect, slantedAlign);

g.DrawSlantedText (tl, angle,

// Draw strings with all details.
= 12;

fmt.FontSize
= {angle}°", fmt, new PointF(x, yHead));
{tl.TextAlignment}", fmt, new PointF (x, yHead +

g.DrawString ($"angle
g.DrawString ($"TextAlignment

new PointF(x, yHead + 40));
yHead

fmt,
new PointF (x,

20));
g.DrawString ($"alignment = {slantedAlign}",
g.DrawString ($"verticalStacking = {verticalStacking}", fmt,
60));
}
angle =-70° angle = -70° angle = -70°
TextAlignment = Leading TextAlignment = Trailing TextAlignment = Center
alignment = BelowRotatedInside alignment = BelowRotatedOutside alignment = AboveRotatedInside
verticalStacking = False verticalStacking = False verticalStacking = False
fﬂq P - Ly / / & /
I~ / /| ¢ @ / / /
[@ / - < / /] /
/& /o $'23 z / / T E ./
/ & ! ,."'|l .‘h @ E‘ l."'ll l."'|l &: 3 'Uf:'.;"f
[e= / /T &L / / = '&J </
/O / / < & / / o @/
ful & / [~ o = / / W o .
.n"lf o é:\- -iE:? .flr ."l. [w] ‘J‘}* o / . /) 15" ,-"I
| g = Q-QJ‘ J / Qg / / b & ch /
/S B / x'x S xI xI £ o x'r
/g9 £ | /& £ 5 %
i [y / / /
/ 8» g Q% /) / / é“' /
/ g / / / / /
/ 5 / / g ll / / ~§ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII /
angle =-70° angle = -70° angle = -70°
TextAlignment = Leading TextAlignment = Trailing TextAlignment = Center
alignment = AboveRotatedOutside alignment = CenterlnsideOutside alignment = CenterOutsidelnside
verticalStacking = False verticalStacking = False verticalStacking = False
o H 7 [T e A . 7 / 7
/ s / / “ / / = /
/ < / / Q? g & / / rﬁ: /
/ @ / / & / / & /
/ o / / T o Y / / G - /
/ & / / = g £ fo & X & /
/ i~ / / 6 = / / = \E’I < /
/ T Il | o & ! / Isj @ /
J Ny y g R J. D /
/ o x5 9/ / o - ",.E / / o @ E /
/ L &/ / 8 © / / s /
/ Qo @/ / IS / / Q < 89 /
/ £ 0 &/ / 5 [£ o = /
r,r 1_\5, ‘S; 3 I; I; -I:E- I; / E-.k o M /
/ o £ . / o / / s) /
/ T =Y / | / /
/ S\' = ?ﬁ";‘ / g / ,'I '§ x'x

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 181

Work with Exif Metadata

The Dslmaging library supports the extraction and modification of Exif metadata from various image formats, such

as JPEG, PNG or TIFF files. With DsImaging, a developer can extract all Exif metadata from the images as mentioned in
the Exif specifications sheet, such as the shutter speed, time it was taken, focal length, light value, use of flash, title,
date, creator, copyright, description location (GPS data) etc..

Dslmaging provides all the Exif metadata of an image in the ExifProfile class which is available

in GrapeCity.Documents.Imaging.Exif namespace. The library also provides ExifProfile property of the GecBitmap
class through which Exif metadata of the images can be accessed. The ExifProfile class mainly includes two methods,
namely GetTags and GetValues. The GetTags method returns an array of all known tags in the profile. On the other
hand, the GetValues method returns a list of all known tags in the profile along with their corresponding values.
These tags are represented by the ExifTag enumeration and values are represented by the ExifValue class. These
values can also be accessed through special properties such as Orientation, ResolutionUnit, LensModel,

etc. provided by the ExifProfile class. The class also caters the unknown tags using the UnknownTags property which
gets a list of values for the unknown tags. Moreover, if required, you can save the Exif metadata to a stream or a byte
array using SaveToStream and ToByteArray methods of the ExifProfile class respectively and also load the Exif
metadata from a stream or a byte array using Load method of the ExifProfile class.

Known lags(42)

Make NIKON CORPORATION

Model NIKON D700

XResolution 96

YResclution 96

ResolutionbUnit 2

Software Adobe Photoshop Lightroom 6.14 (Windows)
DataTime 2019:01:12 18:48:19

ExposureTime 0.01666667
FMumbser 4
ExposureFrogram 3

PhatographicSansitivity 6400
Exifersion 48 50, 51, 48

DateTimeOriginal 2010:06:18 23:52:58
DateTimaDigitized 2010:08:18 23:52:58
ShulterSpeedValue 5.906891
Aperture\Value 4
ExposureBiasValue 1

MaxAperture\Value 2

MeteringMode 5

LightSource 0

Flash 0

FocalLength 35

SubsecTimeOriginal 58

SubsecTimeDigitized 58
ColorSpace 1

SensingMethod 2
FilaSourca 3

ScenaType 1

CFAFattern 2,0,2,0,0,1,1,2
CustomRendered Q
ExposuraMode a
WhiteBalance Q
DigitalZoomRatio 1
FocalLengthlndSmmFilm 35
SceneCapluraType a
Contrast 0

Saturation 0

Sharpness 0
SubjectDistanceRanga 0
BodySerialMumber 2266324
LensSpecification 35,35, 2 2
LensModel 35.0 mm [2.0

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging

To extract and modify the EXIF metadata of an image:

N =

oUW

Initialize the GcBitmap class.

182

Create an instance of ExifProfile class and get the instance with the Exif metadata of the image using the

ExifProfile property.
Get all the known tags values using the GetValues method of ExifProfile class.
Access all the known tags of the profile using the GetTags method of ExifProfile class.

Initialize an instance of the TextLayout class and add all the known tags and values to the TextLayout object.
Render the EXIF metadata of the image along with the image using the DrawTextLayout and Drawlmage

methods respectively.
C#
//Image path

var imgPath = Path.Combine ("Resources", "Images", "fire.jpg");

//Initialize GcBitmap and create bitmap graphics
GcBitmap origbmp = new GcBitmap (imgPath) ;

//Get all the known tags values
ExifProfile ep = origbmp.ExifProfile;

List<KeyValuePair<ExifTag, ExifValue>> knownTagsValues = ep.GetValues();

//Create TextLayout used to show EXIF metadata of the image
TextLayout tl = new TextLayout();
if (knownTagsValues.Count > 0)
{
tl.Append ("Known tags (" + knownTagsValues.Count.ToString() + "):
tl.AppendLine () ;

//Add known tags values to the textlayout
foreach (KeyValuePair<ExifTag, ExifValue> tag in knownTagsValues)
tl.AppendLine (tag.Key + "\t" + tag.Value);
}
else
tl.Append("No known tags");

\r\n");

//Render the created TextLayout and the original image on the output image

GcBitmap targetBmp = new GcBitmap (700, 850, true);
GcBitmapGraphics g = targetBmp.CreateGraphics (Color.White);
using (var img = Image.FromFile (imgPath))
g.DrawImage (img, new RectangleF (20, 30, 200, 200), null,
ImageAlign.ScaleImage) ;
g.DrawTextLayout (tl, new PointF (260, 30));

//Save the image
targetBmp.SaveAsJpeg ("ExifMetadata.jpg") ;

Back to Top

For more information about working with EXIF metadata using Dslmaging, see DsImaging sample browser.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-imaging/demos/basics/exif/show-exif/code-cs

Document Solutions for Imaging 183

Render HTML to Image

Dslmaging library along with DsHtml library lets you easily render HTML content to Images. When you browse through the content on
a website, you may want to capture images to incorporate them into a professional presentation. Sometimes, one may also want to take
the snapshot of online pricing details. With a utility library like DsHtml,the user can conveniently render HTML content to high resolution
images. With DsHtml, you can convert webpages, HTML strings or even URIs to different image formats (JPEG, PNG, BMP, TIFF, GIF and
WebP).

DsHtml is based on the industry standard Chrome web browser engine working in headless mode, offering advantage of rendering
HTML to image on any platform - Windows, Linux and macOS. It doesn't matter whether your .NET application is built for x64, x86 or
AnyCPU platform target. The browser is always working in a separate process.

The DS.Documents.Html package contains the following namespaces:

® GrapeCity.Documents.Html namespace

provides GcHtmIRenderer(Obsolete), GcHtmIBrowser, PdfOptions, ImageOptions, PageOptions, HtmlPage classes etc.
® GrapeCity.Documents.Pdf namespace provides the GePdfGraphicsExt and HtmltoPdfFormat classes.
e GrapeCity.Documents.Drawing namespace provides GeBitmapGraphicsExt and HtmiTolmageFormat class.

Install DsHtml Package

. Open Visual Studio and create a .Net Core Console application.

. Right-click Dependencies and select Manage NuGet Packages.

. With the Package source" set to Nuget website, search for DS.Documents.Imaging under the Browse tab and click Install.
. Similarly, install DS.Documents.Html package.

A wWN =

Z] Note: During installation, you'll receive two confirmation dialogs. Click OK in the Preview Changes dialog box and click I
Agree in the License Acceptance dialog box to proceed installation.

5. Once, the DsHtml package has been installed successfully, add the namespace in Program.cs file.
C#

using GrapeCity.Documents.Html;
using GrapeCity.Documents.Pdf;
using GrapeCity.Documents.Drawing;

6. Apply DsImaging license to GeHtmIBrowser class of DsHtml library to convert HTML to image. Without proper license, the count
is limited to only 5 image conversions. The license can be applied in one of the following ways as shown below:
o To license the instance being created
var html = "<html><body><h1>My First Heading</h1><p>My first paragraph.</p></body></htm[>";
var re = new GcHtmlBrowser(html);
re.ApplyGclmagingLicenseKey("key");

o To license all the instances
GcHtmlBrowser.SetGclmagingLicenseKey("key");
7. Write the sample code.

Render HTML Webpage as Image

1. Get the URI of the HTML webpage you wish to render.

2. Configure image settings using the PageOptions class.

3. Convert the HTML page to JPEG, PNG, or WebP image using the SaveAsPng, SaveAsJpeg or SaveAsWebP methods of the
HtmlPage class.

C#

using GrapeCity.Documents.Html;
using System.Drawing;

var browserPath = BrowserFetcher.GetSystemChromePath () ;
using var browser = new GcHtmlBrowser (browserPath) ;

var uri = new Uri("Sample2.html", UriKind.Relative);
using var pg = browser.NewPage (uri, new PageOptions

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 184

WindowSize = new Size (700, 300),
DefaultBackgroundColor = Color.AliceBlue

1)
Pg.SaveAsPng ("Sample2.png") ;

The resulting image is shown below:

Home Welcome to our site

Here you will learn to create websites...

|‘_§f Note:

® In order to render an HTML page to image, the fonts used on that page should be already installed on your system.
® |t is important to dispose every instance of the GcHtmlIBrowser class after use.

Render HTML Markup as a Bitmap and Save as Image

. Get the HTML string or mark up that you wish to render.
. Store the HTML markup on a new page of the browser instance.
. Configure image settings using the PageOptions class.
. Create a new instance of GeBitmap and apply any transformations you need.
. Use the SaveAsTiff method to save the image in TIFF format.
Similarly, you can use other SaveAs methods of GeBitmap class to save HTML markup in other image formats.

C#

u b wWwnNn =

using GrapeCity.Documents.Imaging;
using GrapeCity.Documents.Html;
using System.Drawing;

var browserPath = BrowserFetcher.GetSystemEdgePath () ;
using var browser = new GcHtmlBrowser (browserPath);

string html = "<p style=\"color: green; text-shadow: 3px 3px 3px gray;\">JavaScript can
change HTML content.</p>";

using var pg = browser.NewPage (html, new PageOptions { DefaultBackgroundColor =
Color.LemonChiffon });

using var bitmap = new GcBitmap();
pg.RenderAndCrop (bitmap, new PngOptions { Scale = 3 }, Color.LemonChiffon, 100, 50, 20, 100);

bitmap.SaveAsTiff ("Sample3.tiff");

The resulting image is shown below:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 185

JavaScript can change HTML content.

Draw HTML String or Page on GcGraphics at Specified Position

The user can also render HTML content to image using the DrawHtml method of GeBitmapGraphicsExt class. The DrawHtml method
allows to convert an HTML text or page into an image. It also allows to insert HTML fragments in images along with other content.
Moreover, the DrawHtml method has two overloads. The GeBitmapGraphics.DrawHtml (string html, float x, float y, HtmITolmageFormat
format, out SizeF size) can be used to draw an HTML text on GeBitmapGraphics at a specified position, while the
GcBitmapGraphics.DrawHtml (Uri htmlUri, float x, float y, HtmITolmageFormat format, out SizeF size) can be used to draw an HTML
page specified by an URI on GeBitmapGraphics at a specified position.

To render HTML string or page on GeBitmapGraphics at specified position, follow the steps below:

1. Create an instance of GeBitmap class.

2. Configure the image settings using the HtmlTolmageFormat class.

3. Save the HTML page or string on GeBitmapGraphics using the DrawHtmlextension method of GeBitmapGraphicsExt class.
4. Call the SaveAsJpeg, SaveAsPng, SaveAsGif, SaveAsBmp and SaveAsTiff methods of GeBitmap class.

C#

//Create an instance of GcBitmap class
var bmp = new GcBitmap (1000, 1000, true, 96, 96);

//Configure image settings
HtmlToImageFormat htmlToImage = new HtmlToImageFormat (true)
{ WindowSize = new Size (500, 500) };

htmlToImage.DefaultBackgroundColor = Color.White;

//Draw HTML Page on GcBitmapGraphics
using (var g = bmp.CreateGraphics (Color.LightBlue))
{

SizeF addSize = new SizeF();

// Create an instance of GcHtmlBrowser that is used to render HTML:

var browserPath = BrowserFetcher.GetSystemChromePath () ;

var browser = new GcHtmlBrowser (browserPath);

g.DrawHtml (browser, new Uri("https://www.apple.com/in/"), 10, 10, htmlToImage, out

addSize);
bmp.SaveAsJpeg ("DrawHtml. jpeg") ;

The resulting image is shown below:

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 186

.

iPhone 11 Pro

Pro cameras. Pro display. Pro performance.

iPhone 11

Just the right amount of everything

23 more

For more information about rendering HTML to Image using DsImaging, see DsImaging demo.

Tips to Migrate from Obsolete GcHtmIRenderer Class

If your application uses obsolete GcHtmIRenderer class to convert the HTML pages or content to an image format, you can use
following steps to quickly update to the new GcHtmlIBrowser class which does not depend on a custom build of Chromium and does
not require GPL or LGPL licenses.

1. In Solution Explorer, go to Project > Dependencies > Packages and remove any references to
o GrapeCity.Documents.Html.Windows.X64
o GrapeCity.Documents.Html.Linux.X64
o GrapeCity.Documents.Html.Mac.X64
2. Check for licensing calls and if they exist, change them as follows:
C#
GcHtmlRenderer.SetGecImagingLicenseKey (key); —-> GcHtmlBrowser.SetGecImagingLicenseKey (key) ;
GcHtmlRenderer.SetGecPdfLicenseKey (key); -> GcHtmlBrowser.SetGePdfLicenseKey (key) ;

3. In order to create and use an instance of GcHtmIBrowser, you require the path to a Chromium based browser on the current
system. For instance, in case of Chrome browser:
o You can get the path to an existing instance of Chrome installed on the current system.

C#
var path = BrowserFetcher.GetSystemChromePath () ;

o Or, you can download and install Chrome in a location of your choice.
C#

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-imaging/demos/html

Document Solutions for Imaging

var tp = Path.GetTempPath();

187

var bf = new BrowserFetcher() { DestinationFolder = Path.Combine(tp, ".gc-chromium") };

var path = bf.GetDownloadedPath();

Z] Note: We recommend using Chrome browser with GcHTMLBrowser class as Edge has some differences in the
implementation of some DevTools features.

4. Create an instance of GcHtmIBrowser. Note that RunWithNoSandbox option may be needed on some Linux systems.

C#

if (RuntimeInformation.IsOSPlatform(OSPlatform.Linux))

return new GcHtmlBrowser (path, new LaunchOptions { RunWithNoSandbox = true });
else

return new GcHtmlBrowser (path)

5. In all calls to GcGraphics.DrawHtml() method, insert browser instance as the first parameter.
C#
g.DrawHtml (html, ...); -> g.DrawHtml (browser, html, ...);

6. Look for instances of GcHtmlIRenderer class which are rendering Uri such as

C#

using var re = new GcHtmlRenderer (uri);

re.RenderTodpeg (file, new JpegSettings() {...});
re.RenderToPng (file, new PngSettings() {...});
and replace them with

C#

// Create an HtmlPage from the URI

// (DefaultBackgroundColor and WindowSize options from Pdf/Jpeg/PngSettings
// have moved to PageOptions, while some other options are now in LaunchOptions) :

using var htmlPage = browser.NewPage (uri, new PageOptions() { WindowSize = pixelSize;..

htmlPage.SaveAsJpeg(file, new JpegOptions() {...});
htmlPage.SaveAsPng(file, new PngOptions() {...});

1)

2] Note: Few methods and properties of JpegSettings and PngSettings classes have been moved to LaunchOptions and

PageOptions classes.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 188

Render Using Skia Library

Skia is an open source 2D graphics library that provides common APIs that work as the graphics engine for Google
Chrome and Chrome OS, Android, Flutter, Mozilla Firefox, Firefox OS, and many other products. In addition to this,
SkiaSharp is a comprehensive cross-platform 2D graphics API for .NET platform used across mobile, server and
desktop models to render images.

The Skia library, just like Dslmaging, offers a rendering engine for drawing text and graphics. However, in case of Skia,
the rendering engine is based on SkiaSharp and has dependency on SkiaSharp and SkiaSharp.NativeAssets.Linux
nuget packages. The Skia library uses the exactly same implementation to render text and graphics as that of
GcGraphics library. The difference is that the Skia library uses Skia engine at backend. In other words, you can use
same approach to draw text and graphics while using the two libraries. However, both of them have their own merits
and any of them could be used depending on the requirement of your application. Below are few recommended
scenarios for each of them.

Skia versus Dslmaging
You should use Skia when your application:

® Requires rendering large or complex images.

® Requires rendering text with fonts hinting and subpixel rendering

® Does not require access to individual pixels, DPI other than 96, EXIF/ICC profiles support, or effects such as
dithering.

e Can afford to have two heavy nuget packages of SkiaSharp and SkiaSharp.NativeAssets.Linux.

You should use Dslmaging when your application:

® Requires advanced drawing features such as transparency marks or logical operations on clip regions that are
available via BitmapRenderer.

Needs large fonts for creating images such as CJK.

Requires pixel level access.

Processes large images but has limited physical memory size.

Requires small footprint.

For detailed information regarding the structure of these two libraries, see DsImaging and Skia in product
architecture.

The code below shows how to render text and graphics using Skia library:

C#

// GcSkiaGraphics calls CreateTextLayout method to render text
using var g = new GcSkiaGraphics (800, 600, false, Color.White);
g.DrawRoundRect (new RectangleF (5, 5, 790, 590), 20, Color.Blue, 2,
DashStyle.DashDot) ;
float DegToRad = (float)Math.PI / 180;
g.Transform = Matrix3x2.CreateRotation (30 * DegToRad) *
Matrix3x2.CreateTranslation (100, 50);
var tl = g.CreateTextLayout()
tl.Append("Hello World!", new TextFormat ()
{

FontName = "Segoe UI",

ForeColor = Color.SandyBrown,

FontSize = 50f

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 189

by

g.DrawTextLayout (tl, PointF.Empty);
using var skialImage = g.ToSkialImage();
skiaImage.SaveAsPng ("result text.png");

// GcSkiaBitmap calls CreateGraphics method to render graphics
using var bmp = new GcSkiaBitmap (800, 600, false);
using (var h = bmp.CreateGraphics (Color.White))
{

h.Transform = Matrix3x2.CreateRotation (-30 * DegToRad) *
Matrix3x2.CreateTranslation (400, 400);

var rect = new RectangleF (0, 0, 300, 200);

h.FillEllipse (rect, new HatchBrush (HatchStyle.Backslashes) { ForeColor =
Color.MediumPurple });

h.DrawEllipse(rect, new Pen(Color.Red, 3));
}
bmp.SaveAsPng ("result graphics.png");

Limitation

® The Skia library has dependency on SkiaSharp and SkiaSharp.NativeAssets.Linux packages.

e Skia does not support changing image resolution, hence all the images are loaded and saved at 96 dpi only.
However, you can implement a partial workaround by using scaling transformation.

® GcSkiaGraphics does not support hardware acceleration and transparency group feature.

® GcSkiaGraphics does not support the "Transparency Groups" feature required for drawing some PDF files to
images. However, you can use GeBitmapGraphics or GeD2DBitmapGraphics classes to work around the
same.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 190

Document Solutions Image Viewer

Document Solutions Image Viewer (DsimageViewer, previously GclmageViewer) is a JavaScript based client-side
image viewer and editor which allows you to view, edit, process, and save images on client side. The control supports
all popular image formats, such as JPEG, PNG, TIFF, GIF, BMP, WebP etc. You can easily integrate it with DsImaging to

meet your client-side needs.

For more information about the viewer, see the Document Solutions Image Viewer documentation.

= @ B Q s QI :

Invert Grayscale Offset Blue Retro Viclet

Grayscale

Offset Blue

Retro Viclet

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/document-solutions/javascript-image-viewer/docs/overview

Document Solutions for Imaging 191

Samples

Dslmaging Samples

All the DsImaging samples are available through the online sample browser. You can browse the source code of
samples, run them on the server, view and download the images in different formats, or download individual samples
to build and run on your own system (Windows, Mac or Linux). For more information, see Quick Start, introductory
page for the samples.

If you choose to download the samples, you can run them using following simple steps:

1. Click the Download action on the top right of the sample page.
2. Unzip the downloaded .zip file of sample.
3. Run the sample.

© 2024 MESCIUS inc. All rights reserved.

https://developer.mescius.com/documents-api-imaging/demos/
https://developer.mescius.com/documents-api-imaging/demos/quick-start

Document Solutions for Imaging 192

API Reference

This section contains documentation for all the assemblies required to create applications using DsImaging.

Assembly
DS.Documents.Html
DS.Documents.Imaging

DS.Documents.Imaging.Windows

DS.Documents.Imaging.Skia

© 2024 MESCIUS inc. All rights reserved.

Description
Cross-platform library that provides HTML processing and rendering features.
Cross-platform library for working with raster images.

Platform-specific library that allows Dslmaging to use Windows system APIs
when running on Windows operating systems.

Cross-platform library based on SkiaSharp that offers a rendering engine for
drawing text and graphics.

Document Solutions for Imaging 193

Release Notes

Refer to the following release notes for the major releases of the product.

Release Notes for Version 7.1.0

Release Notes for Version 7.0.0

Release Notes for Version 6.2.0

Release Notes for Version 6.1.0

Release Notes for Version 6.0.0

Release Notes for Version 5.2.0.800

Release Notes for Version 5.1.0.790

Release Notes for Version 5.0.0.762

Release Notes for Version 4.2.0.719 - No Changes
Release Notes for Version 4.2.0.715

Release Notes for Version 4.1.0.658

Release Notes for Version 4.0.0.616

Release Notes for Version 3.1.0.548 - No Changes
Release Notes for Version 3.1.0.508

Release Notes for Version 3.0.0.414

Release Notes for Version 2.2.0.310

For details about latest hotfixes, see the nuget page.

© 2024 MESCIUS inc. All rights reserved.

https://www.nuget.org/packages/GrapeCity.Documents.Imaging/

Document Solutions for Imaging 194

Breaking Changes

Refer to the following release notes for breaking changes:

Version 6.1.0

Version 5.1.0.790
Version 5.0.0.762
Version 2.2.0.310

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 195

Version 7.1.0

New Features and Improvements

® Added GcGraphics.DrawRotatedText() method: Draws rotated text inside an unrotated rectangle (similar to how
MS Excel draws rotated text in borderless cells).

® Added GcGraphics.DrawSlantedText() method: Draws rotated text inside a slanted rectangle (similar to how MS
Excel draws rotated text in cells with borders).

® Added GcGraphics.MeasureRotatedText() method: Calculates the bounds of rotated text inside an unrotated
rectangle.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 196

Version 7.0.0

Important Note

This is the initial release of the DS.Documents.Imaging package. This package replaces GrapeCity.Documents.Imaging,
and provides the same functionality, ensures future enhancements, and is backwards compatible with
GrapeCity.Documents.Imaging. Existing subscriptions will continue to apply to this new package.

New Features and Improvements

® Added rotation property to the GrapeCity.Documents.Drawing.limage interface, which provides flip and rotate
transformations that can be applied to the image.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 197

Version 6.2.0

New Features and Improvements

® Added following helper classes in GrapeCity.Documents.Layout.Composition namespace to simplify drawing
layouts on a GcGraphics:
o Surface Class: Represents a surface that can draw its views on a GcGraphics.
o Layer Class: Represents a drawing layer with visuals, optional clipping, and nested layers.
o View Class (derived from Layer Class): Represents a Layer with an associated LayoutView object and
transformation.
o Space Class: Represents a space on a Layer with an associated LayoutRect.
o Visual Class (derived from Space Class): Represents a figure, text, or image on a Layer.
® Synced version with other GrapeCity.Documents packages.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 198

Version 6.1.0

Breaking Changes

® GrapeCity.Documents.Svg.SvgMatrix class renamed to Matrix and moved to GrapeCity.Documents.Common
namespace.

® GrapeCity.Documents.Imaging.InterpolationMode enum has been moved to GrapeCity.Documents.Drawing
namespace.

New Features and Improvements

® Added GcGraphics.InterpolationMode property that gets or sets the sampling mode to use when drawing
images with resizing.
® Added GcGraphics.IsinterpolationModeSupported() method, which indicates whether the current graphics
implementation supports a specified interpolation mode.
® Added the following classes and enums to GrapeCity.Documents.Layout namespace that implements a flat
layout model based on constraints. Instead of setting the exact position of a visual element, constraints define
rules for how that position depends on the positions of other elements:
o GrapeCity.Documents.Layout.LayoutHost class: Represents the host and origin of a coordinate system
for LayoutView objects.
o GrapeCity.Documents.Layout.LayoutView class: Represents a transformed surface with a set of
LayoutRect objects.
GrapeCity.Documents.Layout.LayoutRect class: Represents a rectangle with constraints.
GrapeCity.Documents.Layout.AnchorPoint class: Represents a point to be used as an anchor.
GrapeCity.Documents.Layout.Contour class: Represents a closed figure on a LayoutView.
GrapeCity.Documents.Layout.LayoutException class: Represents an error that occurred when resolving
constraints in a LayoutRect.
GrapeCity.Documents.Layout.Constraint class: The base class for LayoutRect constraints.
o GrapeCity.Documents.Layout.AngleConstraint class: Determines the rotation angle of the target
LayoutRect.
o GrapeCity.Documents.Layout.AspectRatioConstraint class: Determines the aspect (width to height) ratio
of the target LayoutRect.
o GrapeCity.Documents.Layout.StarSizeConstraint class: Determines the proportional width or height
(weight) of the target LayoutRect.
o GrapeCity.Documents.Layout.SizeConstraint class: Restricts the width or height of the target LayoutRect.
o GrapeCity.Documents.Layout.PositionConstraint class: Determines the position of the sides or centers of
the target LayoutRect.
o GrapeCity.Documents.Layout.ContourConstraint class: Determines the min/max position of sides relative
to the contour.
o GrapeCity.Documents.Layout.AnchorParam enum: Specifies the source parameter of the anchor
LayoutRect.
o GrapeCity.Documents.Layout.TargetParam enum: Specifies the target parameter of the constraint's
target LayoutRect.
o GrapeCity.Documents.Layout.ContourPosition enum: Specifies the position of the anchor for a contour
constraint.
® Added the following classes that use LayoutHost and related classes and enums to draw simple or complex
tables with merged, rotated, auto-sized, multilayer cells with customizable styles:
o GrapeCity.Documents.Drawing.TableRenderer class: A helper class for drawing tables on a GcGraphics
(e.g., GePdfGraphics or GeBitmapGraphics).
o GrapeCity.Documents.Drawing.TableCell class: Represents the layout, style, and data of a table cell. Cells
can contain simple text, multi-formatted TextLayout, or owner-drawn content.
o GrapeCity.Documents.Drawing.FrameStyle class: Describes the inner border and filling of a table cell or
table frame.

O O O O

[¢]

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 199

o GrapeCity.Documents.Drawing.CellStyle class: Describes the relative position, inner border, filling, and
layout of a table cell.

o GrapeCity.Documents.Drawing.FrameBorders enum: Specifies which border lines are drawn in a table
cell or table frame.

o GrapeCity.Documents.Drawing.FixedTableSides enum: Specifies which sides of a table are fixed. The
position of those sides does not depend on the table's content.

o GrapeCity.Documents.Drawing.CellPosition enum: Specifies whether a table cell appears behind or on
top of other cells.

® The default encoding used by GcBitmap.SaveAslco() changed from Argb32 to Png.

Resolved Issues

® Miscellaneous minor big fixes.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 200

Version 6.0.0

New Features and Improvements

Added new properties such as TextExtensionStrategy, LineBreakingRules, and WordBoundaryRules in
TextLayout class that specify the rules for text extension, line breaking algorithms, and word breaking
algorithms respectively.

Added the ability to generate text elements in place of paths elements while rendering text by setting
GcGraphicsDrawTextAsPath property to false.

Added Gaussian blur effect that applies Gaussian blur to the images.

Added PermissionToEmbedGranted property to the Font class to indicate explicit permission from the legal
owner of the font to embed it in documents produced by the software.

Updated SvgCommentElement class with XML comment in the SVG file.

Added support for new class GcHTMLBrowser for converting HTML markup to images (PNG, JPEG, WEBP).
Added other supporting classes such as BrowserFetcher, HtmlPage, LaunchOptions, PageOptions,
TimeoutOptions.

Added ImageOptions and its other derived classes PngOptions, JpegOptions, and WebpOptions which provide
output settings for rendering HTML to images.

Added another class, GeBitmapGraphicsExt to provide extension methods for rendering HTML to
GcBitmapGraphics.

Marked GcHtmIRenderer and some other classes and methods in GrapeCity.Documents.Html namespace as
obsolete.

Replace custom-built Chromium with Chrome or Edge which is installed in OS, or you can now download
chromium from a public website as well.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 201

Version 5.2.0.800

New Features and Improvements

Added support for WebP image format.

Added WebP member to the ImageEncoding enumeration.

Changed GcBitmap.Load() method overloads to accept images in WebP format.

Added overloads GcBitmap.SaveAsWebp() method to save the images in WebP format.

Changed Image.FromFile(), Image.FromStream(), Image.FromBytes() methods to accept images in WebP
format.

Added Skia (new package GrapeCity.Documents.Imaging.Skia) class representing a rendering engine for
drawing text and graphics based on SkiaSharp.

Added GcSkiaBitmap class representing a SkiaSharp.SKBitmap with an object model similar to GeBitmap.
Added GcSkialmage class representing an immutable image based on SkiaSharp.SKimage.

Added GcSkiaGraphics class which implements a drawing surface based on SkiaSharp.SKSurface and
SkiaSharp.SKCanvas.

Resolved Issues

Fixed incorrect rendering of Thai text.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 202

Version 5.1.0.790

Breaking Changes

® Setting the Resolution property of GeBitmapGraphics, GcWicBitmapGraphics and GeD2DBitmapGraphics to a
value other than 96 now throws an exception.

New Features and Improvements

® Added the GcSvgGraphics class, which represents a graphics object that can be used to draw on a
GcSvgDocument. The GeSvgGraphics.ToSvgDocument() method can be used to create a GeSvgDocument from
graphics.

e Added SvgElement.ShapeRendering property to get or set a hint to the implementation about what tradeoffs
to make as it renders vector graphics elements.

e Added SvgElement.ImageRendering property to get or set a hint to the implementation about how to make
speed versus quality tradeoffs as it performs image processing.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 203

Version 5.0.0.762

New Features and Improvements

Support for rendering SVG (Scalable Vector Graphics) to PDF and raster images.

Class GeSvgDocument: represents an SVG document.

Methods DrawSvg() and MeasureSvg() added to GcGraphics class.

GrapeCity.Documents.Svg namespace: contains types that provide SVG support, some of the more important
classes are listed below.

Abstract base class SvgElement and derived classes: represent various SVG elements.
SvgGraphicsElement class (derived from SvgElement) and derived classes: represent various graphics SVG
elements.

SvgGeometryElement class (derived from SvgGraphicsElement) and derived classes: represent graphics
elements that are defined by paths.

SvgPathBuilder class: helper class for creating instances of SvgPathData.

Other utility types (such as SvglLength, SvgPaint etc.) added in the GrapeCity.Documents.Svg namespace.

Breaking Changes

Breaking changes affecting all GrapeCity.Documents packages:

GrapeCity.Documents.Common package has been removed, types defined in it have been moved to
GrapeCity.Documents.Imaging.

GrapeCity.Documents.Common.Windows package has been replaced by
GrapeCity.Documents.Imaging.Windows.

GrapeCity.Documents.Pdf.Resources has been removed, types defined in it have been moved to
GrapeCity.Documents.Pdf.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 204

Version 4.2.0.715

New Features and Improvements

® Added GcBitmapGraphics.BlendMode implementation. The specified blend mode affects all drawing (graphics,
text and images).

e Added BitmapRenderer.BackgroundBitmap property which specifies a bitmap providing background for all
drawing operations.

e Added BitmapRenderer.TransparencyMaskBitmap property which specifies a grayscale bitmap providing
transparency mask for all drawing operations.

e Added GcBitmap.StorelnTempFile property which indicates whether pixel data should be dynamically mapped
to a temporary file rather than kept fully in memory.

® Added limage.ToGcBitmap(GeBitmap) method which retrieves the underlying GeBitmap, or creates a new
GcBitmap that contains the image data.

Bug Fix

® Miscellaneous bug fixes.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 205

Version 4.1.0.658

Changes From the Previous Release

This version of the product has following changes.

e Updated encoders/decoders for JPEG, PNG and BMP image formats.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 206

Version 4.0.0.616

New Features and Improvements

Added support for ICO image format.

Added Gclco class which represents a set of images stored in ICO format.

Added IcoFrame class which represents a single frame in an ICO file.

Added IcoFrameEncoding enumeration which specifies the encoding of an ICO frame image.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 207

Version 3.1.0.508

New Features and Improvements
® Added support for TrueType hinting instructions in BitmapRenderer.
Bug fixes

® Fixed the exception that occurred when rendering a certain PDF.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 208

Version 3. 0. 0. 414

New Features and Improvements
® Added feature to decode and read images stored in JPEG 2000 format.
® Added new constructor to GeBitmap, GrayscaleBitmap and BilevelBitmap that accepts the existing pixel data as
IntPtr.
® Added new GetContentRect method to the GcBitmap class.
Bug Fix

® Fixed a bug in GeBitmap.GetContentRect method that caused an AccessViolationException.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 209

Version 2.2.0.310

Breaking Changes

This version of the product has the following breaking changes.

Use the GcBitmap.EnsureRendererCreated() method instead of GeBitmap.Renderer property to make sure a
non-null instance of BitmapRenderer is returned.

Renamed GcBitmap.AsBilevelBitmap() method to ToBilevelBitmap (the transparencyMask parameter replaced
with the colorChannel parameter, blacklsZero replaced with whitelsZero with opposite meaning and default
value).

Renamed GcBitmap.AsGrayscaleBitmap() method to ToGrayscaleBitmap() method (the transparencyMask
parameter has been replaced with the colorChannel parameter, blacklsZero parameter has been replaced with
whitelsZero with opposite meaning and default value).

Replaced BlacklsZero property in the BilevelBitmap and GrayscaleBitmap classes with WhitelsZero

property having opposite meaning.

Replaced blacklsZero parameter of BilevelBitmap and GrayscaleBitmap constructors with whitelsZero
parameter having opposite meaning and default value.

Removed Image.ConvertToGrayscale() method (instead, you can use the Image.ToGcBitmap() and apply
GrayscaleEffect to GeBitmap).

Moved the Disposed property from the Image class to the limage interface.

Replaced Image.AsGcBitmap() method with the lImage.ToGcBitmap() method (Iimage interface is supported in
Image and various bitmap classes).

Removed ToPngStream(), ToJpegStream(), GifStream(), FromGcBitmap(), FromFileDeferred(),
FromStreamDeferred() and FromBytesDeferred() methods from the Image class. Instead of the

removed methods, you can call the Image.ToGcBitmap() and then call any of the GcBitmap.SaveAs() methods
to accomplish similar tasks.

Removed withICC argument from FromFile(), FromStream() and FromBytes() methods of the Image class.
Added framelndex as second parameter to the constructors of GecBitmap class which accepts path, stream, or
byte array as the first argument.

Replaced ImageRect type with System.Drawing.Rectangle in method arguments of the GcWicBitmap class.
Renamed TiffFframe.ReadAsGcBitmap() method to TiffFrame.ToGcBitmap().

Renamed WicTiffFrame.ReadAsGcWicBitmap() method to WicTiffframe.ToGcWicBitmap().

Removed Wiclmage class (instead, use GcWicBitmap class).

Removed the Clone() method from the Image class.

Added the lowerBitsFirst parameter to the Indexed4bppBitmap class constructor.

Changes From the Previous Release

This version of the product has the following changes.

Image class is now lightweight and contains just the image metadata and a binding to the actual image data
(e.g. to a disk file or to a stream).

Now, users can convert TiffFrame and WicTiffFrame to an Image object.

GcBitmap and GcWicBitmap can be created from an Image object.

The limage interface has been implemented in the following classes: GecBitmap, GcWicBitmap, BilevelBitmap,
GrayscaleBitmap, Indexed4bppBitmap, Indexed8bppBitmap.

Optimized the GcTiffReader and GcWicTiffReader for a scenario wherein users want to load a single frame from
a large TIFF file.

New Features and Improvements

The following features have been added with this version of the product.

© 2024 MESCIUS inc. All rights reserved.

Document Solutions for Imaging 210

® Added GcGraphics.DrawRoundRect(RectangleF bounds, Pen left, Pen top, Pen right, Pen bottom, CornerRadius
cornerRadius) method, which allows rendering of multi-style rounded border.

® Added GeBitmap.CompositeAndBlend() method supporting all Porter Duff compositing operators and the
advanced blending modes for combining two bitmaps into a single image.

e Added Autolevel(), AdjustLevels(), ExportColorChannel() and ImportColorChannel() methods to the GcBitmap
class.

e Added AutoContrast() and AdjustLevels() methods to the GrayscaleBitmap class.

® Implemented the limage interface in the GeBitmap, GcWicBitmap, BilevelBitmap, GrayscaleBitmap,
Indexed4bppBitmap and Indexed8bppBitmap classes.

e Tiffframe and WicTiffFrame can be converted to an Image object.

® Optimized GcTiffReader and GcWicTiffReader for a situation where only frame is loaded from large TIFF file.

® |[tis possible to load second, third, and other frames from a TIFF file or stream with GcBitmap, GcWicBitmap,
and Image classes.

® GcBitmap and GcWicBitmap can be created from an Image object.

® Added constructors to GcWicBitmap class which accepts path, stream, or byte array.

e Added the ToGcBitmap() method overload that accepts an existing instance of GeBitmap to the following
classes: TiffFrame, BilevelBitmap, GrayscaleBitmap, Indexed4bppBitmap and Indexed8bppBitmap.

® Added GcBitmap.Tolndexed4bppBitmap() and GeBitmap.Tolndexed4bppBitmap() method overloads that
accept a custom palette and a dithering method.

® Added GcBitmap.Tolndexed4bppBitmap() and GeBitmap.Tolndexed4bppBitmap() method overloads based on
the Octree quantizer algorithm.

e Added GcBitmap.GenerateOctreePalette() method which creates an Octree quantizer based palette for the
current image.

® Added LowerBitsFirst property to the Indexed4bppBitmap class.

Added Clip() method to the Indexed4bppBitmap, Indexed8bppBitmap, BilevelBitmap, and GrayscaleBitmap

classes.

Added the GcGifReader and GeGifWriter classes that allow users to read and write multi-frame GIF files.

Added IccProfileData property to the GeBitmap class and other bitmap classes.

ICC profile can now be loaded and saved to the following formats: JPEG, PNG, TIFF, and GIF.

Added new constructors to the GeBitmap and GrayscaleBitmap classes that accept existing pixel data to be

modified in-place.

Added ToPngStream() method to the Iimage interface and all its related classes.

Image class is now lightweight. It contains the image metadata and binding to actual image data.

Added support for all MS Excel pattern fills in the HatchStyle enumeration.

It is now possible to load any frame (not only the first one) from a TIFF file or stream into GcBitmap,

GcWicBitmap and Image objects.

Bug Fixes
The following issue has been resolved since the last release.

e While storing the global palette with less than 129 colors, GcGifWriter doesn't throw any errors now.

© 2024 MESCIUS inc. All rights reserved.

	Table of Contents
	Document Solutions for Imaging Overview
	Key Features
	Getting Started
	Quick Start
	License Information
	Technical Support
	Contacting Sales
	Redistribution
	End-User License Agreement

	Product Architecture
	Features
	Create Image
	Load Image
	Save Image
	Work with GIF files
	Work with TIFF Images
	Work with ICO files
	Work with SVG Files
	Work with WebP Files
	Process Image
	Apply Effects
	Layouts
	Complex Graphic Layouts
	Tables
	Work with Image Colors
	Transparency Mask
	Work with Graphics
	Draw and Fill Shapes
	Clip Region
	Align Image
	Apply Matrix Transformation
	Add Transparency Layer
	Interpolation Mode
	Add Shadow
	Add Glow and Soft Edges

	Work with Text
	Draw Rotated Text

	Work with Exif Metadata

	Render HTML to Image
	Render Using Skia Library
	Document Solutions Image Viewer
	Samples
	API Reference
	Release Notes
	Breaking Changes
	Version 7.1.0
	Version 7.0.0
	Version 6.2.0
	Version 6.1.0
	Version 6.0.0
	Version 5.2.0.800
	Version 5.1.0.790
	Version 5.0.0.762
	Version 4.2.0.715
	Version 4.1.0.658
	Version 4.0.0.616
	Version 3.1.0.508
	Version 3. 0. 0. 414
	Version 2.2.0.310

