SkiaAntialiasing.cs
//
// This code is part of Document Solutions for Imaging demos.
// Copyright (c) MESCIUS inc. All rights reserved.
//
using System;
using System.IO;
using System.Drawing;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;
using GrapeCity.Documents.Drawing;
using GrapeCity.Documents.Text;
using GrapeCity.Documents.Imaging;
using GrapeCity.Documents.Imaging.Skia;
using GCTEXT = GrapeCity.Documents.Text;
using GCDRAW = GrapeCity.Documents.Drawing;
namespace DsImagingWeb.Demos
{
// Text is always rendered with anti-aliasing in Skia.
// Graphics rendering on the other hand can be controlled by
// setting the GcSkiaGraphics.Aliased property.
// This example shows the difference between shapes drawn
// with that property set to false (which is the default)
// and true. Note the more jagged appearance of some lines
// in the lower part of the image (drawn with Aliased set
// to false).
public class SkiaAntialiasing
{
public static bool IsSkiaOnly => true;
private GCTEXT.Font _font = null;
// Helper method to draw a polygon and a caption beneath it.
// Can also be used to just calculate the points without actual drawing.
// startAngle is for the first point, clockwise from (1,0).
private PointF[] DrawPolygon(GcGraphics g, PointF center, float r, int n, float startAngle, GCDRAW.Pen pen, string caption = null)
{
PointF[] pts = new PointF[n];
for (int i = 0; i < n; ++i)
pts[i] = new PointF(center.X + (float)(r * Math.Cos(startAngle + 2 * Math.PI * i / n)), center.Y + (float)(r * Math.Sin(startAngle + 2 * Math.PI * i / n)));
if (pen != null)
g.DrawPolygon(pts, pen);
if (!string.IsNullOrEmpty(caption))
DrawCaption(g, center, r, caption);
return pts;
}
// Helper method to draw a caption beneath a shape:
private void DrawCaption(GcGraphics g, PointF center, float r, string caption)
{
g.DrawString(caption,
new TextFormat()
{
Font = _font,
FontSize = 12,
},
new RectangleF(center.X - r, center.Y - r, r * 2, r * 2),
TextAlignment.Center, ParagraphAlignment.Center, false);
}
// Main entry point.
public Stream GenerateImageStream(string targetMime, Size pixelSize, float dpi, bool opaque, string[] sampleParams = null)
{
switch (targetMime)
{
case Common.Util.MimeTypes.JPEG:
case Common.Util.MimeTypes.PNG:
case Common.Util.MimeTypes.WEBP:
break;
default:
throw new Exception("This sample uses Skia to create the image, and only supports JPEG, PNG and WEBP output formats.");
}
_font = GCTEXT.Font.FromFile(Path.Combine("Resources", "Fonts", "times.ttf"));
var Inch = dpi;
var bmp = new GcSkiaBitmap(pixelSize.Width, pixelSize.Height, opaque);
using (var g = bmp.CreateGraphics(Color.White))
{
DrawShapes(g, bmp.PixelWidth, bmp.PixelHeight, false);
DrawShapes(g, bmp.PixelWidth, bmp.PixelHeight, true);
}
// Done:
var ms = new MemoryStream();
switch (targetMime)
{
case Common.Util.MimeTypes.JPEG:
bmp.SaveAsJpeg(ms);
break;
case Common.Util.MimeTypes.PNG:
bmp.SaveAsPng(ms);
break;
case Common.Util.MimeTypes.WEBP:
bmp.SaveAsWebp(ms);
break;
default:
System.Diagnostics.Debug.Assert(false);
break;
}
return ms;
}
void DrawShapes(GcGraphics g, int pixelWidth, int pixelHeight, bool aliased)
{
if (g is GcSkiaGraphics gskia)
gskia.Aliased = aliased;
// Set up the helper layout grid:
var Inch = g.Resolution;
var grid = new
{
Cols = 4,
Rows = 3,
MarginX = Inch / 6,
MarginY = Inch / 4,
Radius = Inch * 0.6f,
StepX = (pixelWidth - Inch / 2) / 4,
StepY = (pixelHeight - Inch / 4) / 7f,
};
// Insertion point of the next figure's center:
PointF startIp = new PointF(grid.MarginX + grid.StepX / 2, grid.MarginY + grid.StepY / 2 + 10);
if (aliased)
startIp.Y += pixelHeight / 2;
PointF ip = startIp;
// Header:
var pad = 8;
var bord = new RectangleF(pad, pad + (aliased ? pixelHeight / 2 : 0), pixelWidth - pad * 2, pixelHeight / 2 - pad * 2);
g.DrawString($"Shapes (Skia) - Aliased is {aliased}",
new TextFormat()
{
Font = _font,
FontSize = 14,
},
bord,
TextAlignment.Center, ParagraphAlignment.Near);
g.DrawRoundRect(bord, pad, Color.MediumPurple, 2, DashStyle.DashDot);
// Pen used to draw shapes:
var pen = new GCDRAW.Pen(Color.Orange, 1);
pen.LineJoin = PenLineJoin.Round;
int fill = 100; // Surfaces fill alpha
// Circle:
g.DrawEllipse(new RectangleF(ip.X - grid.Radius, ip.Y - grid.Radius, grid.Radius * 2, grid.Radius * 2), pen);
DrawCaption(g, ip, grid.Radius, "Circle");
ip.X += grid.StepX;
// Ellipse:
g.DrawEllipse(new RectangleF(ip.X - grid.Radius * 1.4f, ip.Y - grid.Radius / 2, grid.Radius * 2 * 1.4f, grid.Radius), pen);
DrawCaption(g, ip, grid.Radius, "Ellipse");
ip.X += grid.StepX;
// Cylinder:
float radX = grid.Radius / 1.4f;
float radY = grid.Radius / 6;
float height = grid.Radius * 1.8f;
g.DrawEllipse(new RectangleF(ip.X - radX, ip.Y - height / 2, radX * 2, radY * 2), pen);
g.FillEllipse(new RectangleF(ip.X - radX, ip.Y + height / 2 - radY * 2, radX * 2, radY * 2), Color.FromArgb(fill, pen.Color));
g.DrawEllipse(new RectangleF(ip.X - radX, ip.Y + height / 2 - radY * 2, radX * 2, radY * 2), pen);
g.DrawLine(new PointF(ip.X - radX, ip.Y - height / 2 + radY), new PointF(ip.X - radX, ip.Y + height / 2 - radY), pen);
g.DrawLine(new PointF(ip.X + radX, ip.Y - height / 2 + radY), new PointF(ip.X + radX, ip.Y + height / 2 - radY), pen);
DrawCaption(g, ip, grid.Radius, "Cylinder");
pen.Color = Color.Indigo;
ip.X += grid.StepX;
// Cube:
float cubex = 6;
var cubePtsFar = DrawPolygon(g, new PointF(ip.X - cubex, ip.Y - cubex), grid.Radius, 4, (float)-Math.PI / 4, pen);
var cubePtsNear = DrawPolygon(g, new PointF(ip.X + cubex, ip.Y + cubex), grid.Radius, 4, (float)-Math.PI / 4, pen);
g.DrawLine(cubePtsFar[0], cubePtsNear[0], pen);
g.DrawLine(cubePtsFar[1], cubePtsNear[1], pen);
g.DrawLine(cubePtsFar[2], cubePtsNear[2], pen);
g.DrawLine(cubePtsFar[3], cubePtsNear[3], pen);
g.FillPolygon(new PointF[] { cubePtsFar[1], cubePtsFar[2], cubePtsNear[2], cubePtsNear[1], }, Color.FromArgb(fill, pen.Color));
DrawCaption(g, ip, grid.Radius, "Cube");
pen.Color = Color.DarkGreen;
ip.X = startIp.X;
ip.Y += grid.StepY;
// Pentagon:
DrawPolygon(g, ip, grid.Radius, 5, (float)-Math.PI / 2, pen, "Pentagon");
ip.X += grid.StepX;
// Hexagon:
// For sample sake, we apply a transform to make the hexagon wider and shorter:
g.Transform = Matrix3x2.CreateScale(1.4f, 0.8f) * Matrix3x2.CreateTranslation(ip.X, ip.Y);
DrawPolygon(g, PointF.Empty, grid.Radius, 6, 0, pen, null);
g.Transform = Matrix3x2.Identity;
DrawCaption(g, ip, grid.Radius, "Hexagon");
ip.X += grid.StepX;
// Octagon:
DrawPolygon(g, ip, grid.Radius, 8, (float)-Math.PI / 8, pen, "Octagon");
pen.Color = Color.DarkRed;
ip.X += grid.StepX;
// Triangle:
DrawPolygon(g, ip, grid.Radius, 3, (float)-Math.PI / 2, pen, "Triangle");
ip.X = startIp.X;
ip.Y += grid.StepY;
// Filled pentagram:
var pts = DrawPolygon(g, ip, grid.Radius, 5, (float)-Math.PI / 2, pen, "Pentagram");
pts = new PointF[] { pts[0], pts[2], pts[4], pts[1], pts[3], };
g.FillPolygon(pts, Color.FromArgb(fill, pen.Color));
g.DrawPolygon(pts, pen);
ip.X += grid.StepX;
// Set up a simple kind of oblique projection to draw a pyramid:
var angle = Math.PI / 6;
float s = (float)Math.Sin(angle);
float c = (float)Math.Cos(angle);
Func<float, float, float, PointF> project = (x_, y_, z_) => new PointF(x_ - c * y_ * 0.5f, -(z_ - s * y_ * 0.5f));
Func<Vector3, PointF> p3d = v_ => project(v_.X, v_.Y, v_.Z);
float hedge = grid.Radius; // 1/2 edge
// Debug - draw the 3 axis:
// g.DrawLine(project(0, 0, 0), project(100, 0, 0), Color.Red);
// g.DrawLine(project(0, 0, 0), project(0, 100, 0), Color.Green);
// g.DrawLine(project(0, 0, 0), project(0, 0, 100), Color.Blue);
// 3d points forming a square pyramid:
var pts3d = new Vector3[]
{
new Vector3(-hedge, -hedge, 0),
new Vector3(hedge, -hedge, 0),
new Vector3(hedge, hedge, 0),
new Vector3(-hedge, hedge, 0),
new Vector3(0, 0, hedge * 2),
};
// project the points to draw the pyramid:
pts = pts3d.Select(v_ => p3d(v_)).ToArray();
g.Transform = Matrix3x2.CreateTranslation(ip.X, ip.Y + hedge * 0.7f);
// Visible edges:
g.DrawPolygon(new PointF[] { pts[4], pts[1], pts[2], pts[3], pts[4], pts[2] }, pen);
// Invisible edges:
pen.Width /= 2;
pen.Color = Color.FromArgb(fill, pen.Color);
g.DrawLine(pts[0], pts[4], pen);
g.DrawLine(pts[0], pts[1], pen);
g.DrawLine(pts[0], pts[3], pen);
g.FillPolygon(pts.Take(4).ToArray(), pen.Color);
//
g.Transform = Matrix3x2.Identity;
DrawCaption(g, ip, grid.Radius, "Pyramid");
ip.X += grid.StepX;
pen.Width *= 2;
pen.Color = Color.Green;
// Cone:
float baseh = grid.Radius * 0.3f;
pts = DrawPolygon(g, ip, grid.Radius, 3, (float)-Math.PI / 2, null, "Cone");
g.DrawLines(new PointF[] { pts[2], pts[0], pts[1] }, pen);
var rect = new RectangleF(pts[2].X, pts[2].Y - baseh / 2, pts[1].X - pts[2].X, baseh);
g.FillEllipse(rect, Color.FromArgb(fill, pen.Color));
g.DrawEllipse(rect, pen);
ip.X += grid.StepX;
// Trapezoid (use DrawPolygon to just get the points of the square):
float dx = 10;
pts = DrawPolygon(g, ip, grid.Radius, 4, (float)-Math.PI / 4, null, "Trapezoid");
pts[0].X -= dx;
pts[1].X += dx;
pts[2].X -= dx;
pts[3].X += dx;
g.DrawPolygon(pts, pen);
}
}
}